512 research outputs found

    Effects of Helium Phase Separation on the Evolution of Extrasolar Giant Planets

    Full text link
    We build on recent new evolutionary models of Jupiter and Saturn and here extend our calculations to investigate the evolution of extrasolar giant planets of mass 0.15 to 3.0 M_J. Our inhomogeneous thermal history models show that the possible phase separation of helium from liquid metallic hydrogen in the deep interiors of these planets can lead to luminosities ~2 times greater than have been predicted by homogeneous models. For our chosen phase diagram this phase separation will begin to affect the planets' evolution at ~700 Myr for a 0.15 M_J object and ~10 Gyr for a 3.0 M_J object. We show how phase separation affects the luminosity, effective temperature, radii, and atmospheric helium mass fraction as a function of age for planets of various masses, with and without heavy element cores, and with and without the effect of modest stellar irradiation. This phase separation process will likely not affect giant planets within a few AU of their parent star, as these planets will cool to their equilibrium temperatures, determined by stellar heating, before the onset of phase separation. We discuss the detectability of these objects and the likelihood that the energy provided by helium phase separation can change the timescales for formation and settling of ammonia clouds by several Gyr. We discuss how correctly incorporating stellar irradiation into giant planet atmosphere and albedo modeling may lead to a consistent evolutionary history for Jupiter and Saturn.Comment: 22 pages, including 14 figures. Accepted to the Astrophysical Journa

    Temporal and spatial patterns of the interannual variability of total ozone in the tropics

    Get PDF
    The recently constructed gridded Merged Ozone Data (MOD) set, combining the monthly mean column abundances collected by the Total Ozone Mapping Spectrometer (TOMS) and the Solar Backscatter Ultraviolet (SBUV and SBUV/2) instruments, provides a nearly continuous record from late 1978 to 2000 on a 5° × 10° latitude-longitude grid. The precision of these measurements and their calibration allow very small signals, ∼1% of total column ozone, to be clearly seen. Using MOD, we have carried out an empirical orthogonal function (EOF) study of the temporal and spatial patterns of the interannual variability of total column ozone in the tropics. The first four EOFs of our study capture over 93% of the variance of the deseasonalized data. The leading two EOFs of our study, respectively accounting for 42% and 33% of the variance, display structures attributable to the quasi-biennial oscillation(QBO), with influence from a decadal oscillation. The third EOF (15% of the variance) represents an interaction between the QBO and an annual cycle. The fourth EOF (3% of the variance) is related to the El Niño - Southern Oscillation. This EOF decomposition is robust; nearly identical patterns occur in the decomposition of various equatorial latitude bands of MOD and similar patterns occur in the analysis of the deseasonalized TOMS data set, a shorter record with a more finely resolved spatial grid. For comparison, similar decompositions were performed for dynamical fields from the reanalysis product from the National Centers for Environmental Prediction and the National Center for Atmospheric Research. Using these analyses, we found possible connections between the deduced patterns in ozone and the climate variables

    The Interiors of Giant Planets: Models and Outstanding Questions

    Full text link
    We know that giant planets played a crucial role in the making of our Solar System. The discovery of giant planets orbiting other stars is a formidable opportunity to learn more about these objects, what is their composition, how various processes influence their structure and evolution, and most importantly how they form. Jupiter, Saturn, Uranus and Neptune can be studied in detail, mostly from close spacecraft flybys. We can infer that they are all enriched in heavy elements compared to the Sun, with the relative global enrichments increasing with distance to the Sun. We can also infer that they possess dense cores of varied masses. The intercomparison of presently caracterised extrasolar giant planets show that they are also mainly made of hydrogen and helium, but that they either have significantly different amounts of heavy elements, or have had different orbital evolutions, or both. Hence, many questions remain and are to be answered for significant progresses on the origins of planets.Comment: 43 pages, 11 figures, 3 tables. To appear in Annual Review of Earth and Planetary Sciences, vol 33, (2005

    The potential consequences for cell Signaling by a class of NOD-Like Receptor proteins (NLRs) bearing an N-terminal signal sequence

    Get PDF
    The authors gratefully acknowledge the support of the UK Biotechnology and Biological Sciences Research Council (BBSRC) for the work on cellular 2A-like sequences.Publisher PDFPeer reviewe

    Detection of carbapenemases blaOXA48-blaKPC-blaNDM-blaVIM and extended-spectrum-β-lactamase blaOXA1-blaSHV-blaTEM genes in Gram-negative bacterial isolates from ICU burns patients

    Get PDF
    BACKGROUND AND OBJECTIVES: Burn patients are highly susceptible to invasion by multidrug-resistant Gram-negative bacteria (MDR-GNB) through post-burn damage. The prevalence of MDR-GNB isolated from burns patients has increased dramatically in the last decade, representing a serious risk to patients admitted to burns units worldwide. The challenges of managing infected burns patients are exacerbated in poor resource settings. This study was designed to develop a pathway for the rapid diagnosis of multidrug-resistant (MDR) Gram-negative infections and identify the bacterial genes including blaOXA1, blaTEM, and blaSHV encoding ESBLs and blaOXA48, blaKPC, blaNDM, and blaVIM encoding carbapenemases from the patient of post burns infection.  METHODS: Clinical isolates were collected (August 2017 to August 2018) from Intensive care unit (ICU) of Burn Centre. Antibiotic susceptibility testing and phenotypic detection of ESBLs and carbapenemases was performed by disk diffusion, double disk synergy test (DDST), combination disk test (CDT), and Imipenem + EDTA combined disk test (IMP + EDTA CDT). Polymerase chain reaction (PCR) detection was performed for ESBLs blaOXA1-blaSHV-blaTEM and carbapenemases genes blaOXA48-blaKPC-blaNDM-blaVIM RESULTS: In total, of 170 Gram-negative isolates, 104 (61.2%) were confirmed as multidrug-resistant (MDR); Pseudomonas aeruginosa was found to be the most prevalent 43/104 (41.4%), followed by Klebsiella pneumoniae 17/104 (16.4%), Acinetobacter baumannii12/104 (11.5%), and 6/104 Proteus mirabilis (5.8%). All isolates (100%) were resistant to cefotaxime and ceftazidime, while the meropenem resistance was 58.7%. ESBL and carbapenemase genotypes were found to be associated with higher MAR index (0.65-0.88) and MIC (> 32 µg/ml) values P. aeruginosa was the major ESBL and carbapenemase producer as determined by phenotypic testing and PCR. blaTEM positive isolates among ESBLs producers were predominant 81.8% (27/33), followed by 27.3% blaOXA1 and blaSHV, respectively. blaVIM positive isolates among carbapenemase producers were predominant 47.7% (21/44), followed by 27.3% blaKPC, 20.5% blaOXA48, and 11.4% blaNDM positive isolates. CONCLUSIONS: The predominant organism causing burn infections was ESBL and carbapenemase-producing Pseudomonas aeruginosa. There are only limited effective antibiotics against such strains. blaVIM and blaTEM individually and in co-existence with blaKPC, blaOXA48, blaSHV, and blaOXA1 confer antimicrobial resistance in burns patients. Rapid detection of ESBL and carbapenemase genes will inform treatment strategies improving the outcome for post-burn patients in ICU

    Detection of embryo mortality and hatch using thermal differences among incubated chicken eggs

    Get PDF
    Accurate diagnosis of both the stage of embryonic mortality and the hatch process in incubated eggs is a fundamental component in troubleshooting and hatchery management. However, traditional methods disturb incubation, destroy egg samples, risk contamination, are time and labour-intensive and require specialist knowledge and training. Therefore, a new method to accurately detect embryonic mortality and hatching time would be of significant interest for the poultry industry if it could be done quickly, cheaply and be fully integrated into the process. In this study we have continuously measured individual eggshell temperatures and the corresponding micro-environmental air temperatures throughout the 21 days of incubation using standard low-cost temperature sensors. Moreover, we have quantified the thermal interaction between eggs and air by calculating thermal profile changes (temperature drop time, drop length and drop magnitude) that allowed us to detect four categories of egg status (infertile/early death, middle death, late death and hatch) during incubation. A decision tree induction classification model accurately (93.3%) predicted the status of 105 sampled eggs in comparison to the classical hatch residue breakout analyses. With this study we have provided a major contribution to the optimisation of incubation processes by introducing an alternative method for the currently practiced hatch residue breakout analyses.status: publishe
    • …
    corecore