17 research outputs found

    Integrating genetic regulation and single-cell expression with GWAS prioritizes causal genes and cell types for glaucoma

    Get PDF
    Primary open-angle glaucoma (POAG), characterized by retinal ganglion cell death, is a leading cause of irreversible blindness worldwide; however, the molecular and cellular causes are not well understood. Elevated intraocular pressure (IOP) is a major risk factor, but many patients have normal IOP. Colocalization and Mendelian randomization analysis of >240 POAG and IOP genome-wide association study (GWAS) loci and of overlapping expression and splicing quantitative trait loci (e/QTLs and sQTLs) in 49 GTEx tissues and retina prioritizesd causal genes for 60% of loci. These genes awere enriched in pathways implicated in extracellular matrix organization, cell adhesion, and vascular development. Analysis of single-nucleus RNA-seq of glaucoma-relevant eye tissues revealesd that the colocalizing genes and genome-wide POAG and IOP associations awere enriched in specific cell types in the aqueous outflow pathways, retina, optic nerve head, peripapillary sclera, and choroid. This study nominatesd IOP-dependent and independent regulatory mechanisms, genes, and cell types that may contribute to POAG pathogenesis

    Integrating genetic regulation and single-cell expression with GWAS prioritizes causal genes and cell types for glaucoma

    Get PDF
    Primary open-angle glaucoma (POAG), characterized by retinal ganglion cell death, is a leading cause of irreversible blindness worldwide. However, its molecular and cellular causes are not well understood. Elevated intraocular pressure (IOP) is a major risk factor, but many patients have normal IOP. Colocalization and Mendelian randomization analysis of &gt;240 POAG and IOP genome-wide association study (GWAS) loci and overlapping expression and splicing quantitative trait loci (e/sQTLs) in 49 GTEx tissues and retina prioritizes causal genes for 60% of loci. These genes are enriched in pathways implicated in extracellular matrix organization, cell adhesion, and vascular development. Analysis of single-nucleus RNA-seq of glaucoma-relevant eye tissues reveals that the POAG and IOP colocalizing genes and genome-wide associations are enriched in specific cell types in the aqueous outflow pathways, retina, optic nerve head, peripapillary sclera, and choroid. This study nominates IOP-dependent and independent regulatory mechanisms, genes, and cell types that may contribute to POAG pathogenesis.</p

    Integrating genetic regulation and single-cell expression with GWAS prioritizes causal genes and cell types for glaucoma

    Get PDF
    Primary open-angle glaucoma (POAG), characterized by retinal ganglion cell death, is a leading cause of irreversible blindness worldwide. However, its molecular and cellular causes are not well understood. Elevated intraocular pressure (IOP) is a major risk factor, but many patients have normal IOP. Colocalization and Mendelian randomization analysis of &gt;240 POAG and IOP genome-wide association study (GWAS) loci and overlapping expression and splicing quantitative trait loci (e/sQTLs) in 49 GTEx tissues and retina prioritizes causal genes for 60% of loci. These genes are enriched in pathways implicated in extracellular matrix organization, cell adhesion, and vascular development. Analysis of single-nucleus RNA-seq of glaucoma-relevant eye tissues reveals that the POAG and IOP colocalizing genes and genome-wide associations are enriched in specific cell types in the aqueous outflow pathways, retina, optic nerve head, peripapillary sclera, and choroid. This study nominates IOP-dependent and independent regulatory mechanisms, genes, and cell types that may contribute to POAG pathogenesis.</p

    Genome-wide meta-analysis identifies 127 open-angle glaucoma loci with consistent effect across ancestries

    Get PDF
    Primary open-angle glaucoma (POAG), is a heritable common cause of blindness world-wide. To identify risk loci, we conduct a large multi-ethnic meta-analysis of genome-wide association studies on a total of 34,179 cases and 349,321 controls, identifying 44 previously unreported risk loci and confirming 83 loci that were previously known. The majority of loci have broadly consistent effects across European, Asian and African ancestries. Cross-ancestry data improve fine-mapping of causal variants for several loci. Integration of multiple lines of genetic evidence support the functional relevance of the identified POAG risk loci and highlight potential contributions of several genes to POAG pathogenesis, including SVEP1, RERE, VCAM1, ZNF638, CLIC5, SLC2A12, YAP1, MXRA5, and SMAD6. Several drug compounds targeting POAG risk genes may be potential glaucoma therapeutic candidates. Primary open-angle glaucoma (POAG) is highly heritable, yet not well understood from a genetic perspective. Here, the authors perform a meta-analysis of genome-wide association studies in 34,179 POAG cases, identifying 44 previously unreported risk loci and mapping effects across multiple ethnicities

    Single-nucleus cross-tissue molecular reference maps toward understanding disease gene function

    No full text
    Understanding gene function and regulation in homeostasis and disease requires knowledge of the cellular and tissue contexts in which genes are expressed. Here, we applied four single-nucleus RNA sequencing methods to eight diverse, archived, frozen tissue types from 16 donors and 25 samples, generating a cross-tissue atlas of 209,126 nuclei profiles, which we integrated across tissues, donors, and laboratory methods with a conditional variational autoencoder. Using the resulting cross-tissue atlas, we highlight shared and tissue-specific features of tissue-resident cell populations; identify cell types that might contribute to neuromuscular, metabolic, and immune components of monogenic diseases and the biological processes involved in their pathology; and determine cell types and gene modules that might underlie disease mechanisms for complex traits analyzed by genome-wide association studies.</jats:p

    Genome-wide meta-analysis identifies 127 open-angle glaucoma loci with consistent effect across ancestries

    Get PDF
    Primary open-angle glaucoma (POAG), is a heritable common cause of blindness world-wide. To identify risk loci, we conduct a large multi-ethnic meta-analysis of genome-wide association studies on a total of 34,179 cases and 349,321 controls, identifying 44 previously unreported risk loci and confirming 83 loci that were previously known. The majority of loci have broadly consistent effects across European, Asian and African ancestries. Cross-ancestry data improve fine-mapping of causal variants for several loci. Integration of multiple lines of genetic evidence support the functional relevance of the identified POAG risk loci and highlight potential contributions of several genes to POAG pathogenesis, including SVEP1, RERE, VCAM1, ZNF638, CLIC5, SLC2A12, YAP1, MXRA5, and SMAD6. Several drug compounds targeting POAG risk genes may be potential glaucoma therapeutic candidates. Primary open-angle glaucoma (POAG) is highly heritable, yet not well understood from a genetic perspective. Here, the authors perform a meta-analysis of genome-wide association studies in 34,179 POAG cases, identifying 44 previously unreported risk loci and mapping effects across multiple ethnicities.Peer reviewe

    Gene Set Enrichment Analsyes Identiify Pathways Involved in Genetic Risk for Diabetic Retinopathy

    No full text
    To identify functionally related genes associated with diabetic retinopathy (DR) risk using gene set enrichment analyses applied to genome-wide association study meta-analyses.MethodsWe analyzed DR GWAS meta-analyses performed on 3246 Europeans and 2611 African Americans with type 2 diabetes. Gene sets relevant to 5 key DR pathophysiology processes were investigated: tissue injury, vascular events, metabolic events and glial dysregulation, neuronal dysfunction, and inflammation. Keywords relevant to these processes were queried in 4 pathway and ontology databases. Two GSEA methods, Meta-Analysis Gene set Enrichment of variaNT Associations (MAGENTA) and Multi-marker Analysis of GenoMic Annotation (MAGMA), were used. Gene sets were defined to be enriched for gene associations with DR if the P value corrected for multiple testing (Pcorr) was &lt;.05.ResultsFive gene sets were significantly enriched for numerous modest genetic associations with DR in one method (MAGENTA or MAGMA) and also at least nominally significant (uncorrected P &lt; .05) in the other method. These pathways were regulation of the lipid catabolic process (2-fold enrichment, Pcorr&nbsp;=&nbsp;.014); nitric oxide biosynthesis (1.92-fold enrichment, Pcorr&nbsp;=&nbsp;.022); lipid digestion, mobilization, and transport (1.6-fold enrichment, P&nbsp;=&nbsp;.032); apoptosis (1.53-fold enrichment, P&nbsp;=&nbsp;.041); and retinal ganglion cell degeneration (2-fold enrichment, Pcorr&nbsp;=&nbsp;.049). The interferon gamma (IFNG) gene, previously implicated in DR by protein-protein interactions in our GWAS, was among the top ranked genes in the nitric oxide pathway (best variant P&nbsp;=&nbsp;.0001).ConclusionsThese GSEA indicate that variants in genes involved in oxidative stress, lipid transport and catabolism, and cell degeneration are enriched for genes associated with DR risk. NOTE: Publication of this article is sponsored by the American Ophthalmological Society

    Genome-wide meta-analysis identifies 127 open-angle glaucoma loci with consistent effect across ancestries

    Get PDF
    Primary open-angle glaucoma (POAG), is a heritable common cause of blindness world-wide. To identify risk loci, we conduct a large multi-ethnic meta-analysis of genome-wide association studies on a total of 34,179 cases and 349,321 controls, identifying 44 previously unreported risk loci and confirming 83 loci that were previously known. The majority of loci have broadly consistent effects across European, Asian and African ancestries. Cross-ancestry data improve fine-mapping of causal variants for several loci. Integration of multiple lines of genetic evidence support the functional relevance of the identified POAG risk loci and highlight potential contributions of several genes to POAG pathogenesis, including SVEP1, RERE, VCAM1, ZNF638, CLIC5, SLC2A12, YAP1, MXRA5, and SMAD6. Several drug compounds targeting POAG risk genes may be potential glaucoma therapeutic candidates
    corecore