515 research outputs found

    Population Cycling in Space-Limited Organisms Subject to Density-Dependent Predation

    Get PDF
    We present a population model with density-dependent disturbance. The model is motivated by, and is illustrated with, data on the percentage of space covered by barnacles on quadrats of rock in the intertidal zone. The autocorrelation function observed indicates population cycling. This autocorrelation function is predicted qualitatively and quantitatively by the detailed model we present. The general version of the model suggests the following rules regarding cycling in space-limited communities subject to density-dependent disturbances. These rules may apply to any space-limited community where a density-dependent disturbance reduces population densities to very low levels, like fire or wind for plant communities. We propose that the period of the cycle will be approximately equal to the time it takes the community to reach a critical density plus the average time between disturbance events when the density is above that critical density. The cycling will only be clear from autocorrelation data if the growth process is relatively consistent, there is a critical density (which the sessile organism reaches and passes) above which the probability of disturbance increases rapidly, and the time to reach the critical density is at least twice the average time between disturbance events

    Simulated ecology-driven sympatric speciation

    Full text link
    We introduce a multi-locus genetically acquired phenotype, submitted to mutations and with selective value, in an age-structured model for biological aging. This phenotype describes a single-trait effect of the environment on an individual, and we study the resulting distribution of this trait among the population. In particular, our simulations show that the appearance of a double phenotypic attractor in the ecology induces the emergence of a stable polymorphism, as observed in the Galapagos finches. In the presence of this polymorphism, the simulations generate short-term speciation, when mating preferences are also allowed to suffer mutations and acquire selective value.Comment: 11 pages, 5 figures, 1 table, uses package RevTe

    Efficiency in Multi-objective Games

    Full text link
    In a multi-objective game, each agent individually evaluates each overall action-profile on multiple objectives. I generalize the price of anarchy to multi-objective games and provide a polynomial-time algorithm to assess it. This work asserts that policies on tobacco promote a higher economic efficiency

    Nash Social Welfare in Selfish and Online Load Balancing

    Full text link
    In load balancing problems there is a set of clients, each wishing to select a resource from a set of permissible ones, in order to execute a certain task. Each resource has a latency function, which depends on its workload, and a client's cost is the completion time of her chosen resource. Two fundamental variants of load balancing problems are {\em selfish load balancing} (aka. {\em load balancing games}), where clients are non-cooperative selfish players aimed at minimizing their own cost solely, and {\em online load balancing}, where clients appear online and have to be irrevocably assigned to a resource without any knowledge about future requests. We revisit both selfish and online load balancing under the objective of minimizing the {\em Nash Social Welfare}, i.e., the geometric mean of the clients' costs. To the best of our knowledge, despite being a celebrated welfare estimator in many social contexts, the Nash Social Welfare has not been considered so far as a benchmarking quality measure in load balancing problems. We provide tight bounds on the price of anarchy of pure Nash equilibria and on the competitive ratio of the greedy algorithm under very general latency functions, including polynomial ones. For this particular class, we also prove that the greedy strategy is optimal as it matches the performance of any possible online algorithm

    Resource Competition on Integral Polymatroids

    Full text link
    We study competitive resource allocation problems in which players distribute their demands integrally on a set of resources subject to player-specific submodular capacity constraints. Each player has to pay for each unit of demand a cost that is a nondecreasing and convex function of the total allocation of that resource. This general model of resource allocation generalizes both singleton congestion games with integer-splittable demands and matroid congestion games with player-specific costs. As our main result, we show that in such general resource allocation problems a pure Nash equilibrium is guaranteed to exist by giving a pseudo-polynomial algorithm computing a pure Nash equilibrium.Comment: 17 page

    Designing cost-sharing methods for Bayesian games

    Get PDF
    We study the design of cost-sharing protocols for two fundamental resource allocation problems, the Set Cover and the Steiner Tree Problem, under environments of incomplete information (Bayesian model). Our objective is to design protocols where the worst-case Bayesian Nash equilibria, have low cost, i.e. the Bayesian Price of Anarchy (PoA) is minimized. Although budget balance is a very natural requirement, it puts considerable restrictions on the design space, resulting in high PoA. We propose an alternative, relaxed requirement called budget balance in the equilibrium (BBiE).We show an interesting connection between algorithms for Oblivious Stochastic optimization problems and cost-sharing design with low PoA. We exploit this connection for both problems and we enforce approximate solutions of the stochastic problem, as Bayesian Nash equilibria, with the same guarantees on the PoA. More interestingly, we show how to obtain the same bounds on the PoA, by using anonymous posted prices which are desirable because they are easy to implement and, as we show, induce dominant strategies for the players

    Malicious Bayesian Congestion Games

    Full text link
    In this paper, we introduce malicious Bayesian congestion games as an extension to congestion games where players might act in a malicious way. In such a game each player has two types. Either the player is a rational player seeking to minimize her own delay, or - with a certain probability - the player is malicious in which case her only goal is to disturb the other players as much as possible. We show that such games do in general not possess a Bayesian Nash equilibrium in pure strategies (i.e. a pure Bayesian Nash equilibrium). Moreover, given a game, we show that it is NP-complete to decide whether it admits a pure Bayesian Nash equilibrium. This result even holds when resource latency functions are linear, each player is malicious with the same probability, and all strategy sets consist of singleton sets. For a slightly more restricted class of malicious Bayesian congestion games, we provide easy checkable properties that are necessary and sufficient for the existence of a pure Bayesian Nash equilibrium. In the second part of the paper we study the impact of the malicious types on the overall performance of the system (i.e. the social cost). To measure this impact, we use the Price of Malice. We provide (tight) bounds on the Price of Malice for an interesting class of malicious Bayesian congestion games. Moreover, we show that for certain congestion games the advent of malicious types can also be beneficial to the system in the sense that the social cost of the worst case equilibrium decreases. We provide a tight bound on the maximum factor by which this happens.Comment: 18 pages, submitted to WAOA'0

    How Gaussian competition leads to lumpy or uniform species distributions

    Get PDF
    A central model in theoretical ecology considers the competition of a range of species for a broad spectrum of resources. Recent studies have shown that essentially two different outcomes are possible. Either the species surviving competition are more or less uniformly distributed over the resource spectrum, or their distribution is 'lumped' (or 'clumped'), consisting of clusters of species with similar resource use that are separated by gaps in resource space. Which of these outcomes will occur crucially depends on the competition kernel, which reflects the shape of the resource utilization pattern of the competing species. Most models considered in the literature assume a Gaussian competition kernel. This is unfortunate, since predictions based on such a Gaussian assumption are not robust. In fact, Gaussian kernels are a border case scenario, and slight deviations from this function can lead to either uniform or lumped species distributions. Here we illustrate the non-robustness of the Gaussian assumption by simulating different implementations of the standard competition model with constant carrying capacity. In this scenario, lumped species distributions can come about by secondary ecological or evolutionary mechanisms or by details of the numerical implementation of the model. We analyze the origin of this sensitivity and discuss it in the context of recent applications of the model.Comment: 11 pages, 3 figures, revised versio

    The Perfect Family: Decision Making in Biparental Care

    Get PDF
    Background Previous theoretical work on parental decisions in biparental care has emphasized the role of the conflict between evolutionary interests of parents in these decisions. A prominent prediction from this work is that parents should compensate for decreases in each other\u27s effort, but only partially so. However, experimental tests that manipulate parents and measure their responses fail to confirm this prediction. At the same time, the process of parental decision making has remained unexplored theoretically. We develop a model to address the discrepancy between experiments and the theoretical prediction, and explore how assuming different decision making processes changes the prediction from the theory. Model Description We assume that parents make decisions in behavioral time. They have a fixed time budget, and allocate it between two parental tasks: provisioning the offspring and defending the nest. The proximate determinant of the allocation decisions are parents\u27 behavioral objectives. We assume both parents aim to maximize the offspring production from the nest. Experimental manipulations change the shape of the nest production function. We consider two different scenarios for how parents make decisions: one where parents communicate with each other and act together (the perfect family), and one where they do not communicate, and act independently (the almost perfect family). Conclusions/Significance The perfect family model is able to generate all the types of responses seen in experimental studies. The kind of response predicted depends on the nest production function, i.e. how parents\u27 allocations affect offspring production, and the type of experimental manipulation. In particular, we find that complementarity of parents\u27 allocations promotes matching responses. In contrast, the relative responses do not depend on the type of manipulation in the almost perfect family model. These results highlight the importance of the interaction between nest production function and how parents make decisions, factors that have largely been overlooked in previous models
    • …
    corecore