424 research outputs found
Renal pericytes: regulators of medullary blood flow
Regulation of medullary blood flow (MBF) is essential in maintaining normal kidney function. Blood flow to the medulla is supplied by the descending vasa recta (DVR), which arise from the efferent arterioles of juxtamedullary glomeruli. DVR are composed of a continuous endothelium, intercalated with smooth muscle-like cells called pericytes. Pericytes have been shown to alter the diameter of isolated and in situ DVR in response to vasoactive stimuli that are transmitted via a network of autocrine and paracrine signalling pathways. Vasoactive stimuli can be released by neighbouring tubular epithelial, endothelial, red blood cells and neuronal cells in response to changes in NaCl transport and oxygen tension. The experimentally described sensitivity of pericytes to these stimuli strongly suggests their leading role in the phenomenon of MBF autoregulation. Because the debate on autoregulation of MBF fervently continues, we discuss the evidence favouring a physiological role for pericytes in the regulation of MBF and describe their potential role in tubulo-vascular cross-talk in this region of the kidney. Our review also considers current methods used to explore pericyte activity and function in the renal medulla
Patterns of ash (Fraxinus excelsior L.) colonization in mountain grasslands: the importance of management practices
International audienceWoody colonization of grasslands is often associated with changes in abiotic or biotic conditions or a combination of both. Widely used as fodder and litter in the past traditional agro-pastoral system, ash (Fraxinus excelsior L.) has now become a colonizing species of mountain grasslands in the French Pyrenees. Its present distribution is dependent on past human activities and it is locally controlled by propagule pressure and abiotic conditions. However, even when all favourable conditions are met, all the potentially colonizable grasslands are not invaded. We hypothesize that management practices should play a crucial role in the control of ash colonization. From empirical field surveys we have compared the botanical composition of a set of grasslands (present and former) differing in management practices and level of ash colonization. We have displayed a kind of successional gradient positively linked to both ash cover and height but not to the age of trees. We have tested the relationships between ash presence in grassland and management types i.e. cutting and/or grazing, management intensity and some grassland communities' features i.e. total and local specific richness and species heterogeneity. Mixed use (cutting and grazing) is negatively linked to ash presence in grassland whereas grazing alone positively. Mixed use and high grazing intensity are directly preventing ash seedlings establishment, when low grazing intensity is allowing ash seedlings establishment indirectly through herbaceous vegetation neglected by livestock. Our results show the existence of a limit between grasslands with and without established ashes corresponding to a threshold in the intensity of use. Under this threshold, when ash is established, the colonization process seems to become irreversible. Ash possesses the ability of compensatory growth and therefore under a high grazing intensity develops a subterranean vegetative reproduction. However the question remains at which stage of seedling development and grazing intensity these strategies could occur
Metal centers and aromatic moieties in Schiff base complexes: impact on G-quadruplex stabilization and oncogene downregulation
We present the synthesis and characterization of novel square planar transition metal complexes of Schiff base ligands, which act as guanine quadruplex binders and stabilizers. The complexes stabilize quadruplexes related to telomere stability or present in oncogene regulatory sequences, as determined by optical spectroscopy, pointing out the emergence of selectivity towards specific structures or sequences. These results are supported and rationalized by molecular modeling simulations. Furthermore, we show that the treatment of cancer cell lines with our complexes is associated with the increase in the number of nuclear guanine quadruplexes and the downregulation in the expression of the considered oncogenes. Remarkably, only very moderate cytotoxicity can be observed for all complexes. These results pave the way for the development of selective anticancer treatment by metal compounds targeting the expression of specific oncogenes.We present the synthesis and characterization of novel square planar transition metal complexes of Schiff base ligands, which act as guanine quadruplex binders and stabilizers
A multi-scale modelling framework to guide management of plant invasions in a transboundary context
Background
Attention has recently been drawn to the issue of transboundary invasions, where species introduced and naturalized in one country cross international borders and become problematic in neighbouring countries. Robust modelling frameworks, able to identify the environmental drivers of invasion and forecast the current and future potential distribution of invasive species, are needed to study and manage invasions. Limitations due to the lack of species distribution and environmental data, or assumptions of modelling tools, often constrain the reliability of model predictions.
Methods
We present a multiscale spatial modelling framework for transboundary invasions, incorporating robust modelling frameworks (Multimodel Inference and Ensemble Modelling) to overcome some of the limitations. The framework is illustrated using Hakea sericea Schrad. (Proteaceae), a shrub or small tree native to Australia and invasive in several regions of the world, including the Iberian Peninsula. Two study scales were considered: regional scale (western Iberia, including mainland Portugal and Galicia) and local scale (northwest Portugal). At the regional scale, the relative importance of environmental predictors sets was evaluated and ranked to determine the main general drivers for the species distribution, while the importance of each environmental predictor was assessed at the local scale. The potential distribution of H. sericea was spatially projected for both scale areas.
Results
Model projections for western Iberia suggest that a large area is environmentally suitable in both Portugal and Spain. Climate and landscape composition sets were the most important determinants of this regional distribution of the species. Conversely, a geological predictor (schist lithology) was more important in explaining its local-scale distribution.
Conclusions
After being introduced to Portugal, H. sericea has become a transboundary invader by expanding in parts of Galicia (Spain). The fact that a larger area is predicted as environmentally suitable in Spain raises concerns regarding its potential continued expansion. This highlights the importance of transboundary cooperation in the early management of invasions. By reliably identifying drivers and providing spatial projections of invasion at multiple scales, this framework provides insights for the study and management of biological invasions, including the assessment of transboundary invasion risk.This work was funded by FEDER funds through the Operational Programme
for Competitiveness Factors - COMPETE and by National Funds through
FCT - Foundation for Science and Technology under the project PTDC/AAGMAA/4539/2012
/ FCOMP-01-0124-FEDER-027863 (IND_CHANGE). J. Vicente
is supported by POPH/FSE funds and by National Funds through FCT -
Foundation for Science and Technology through Post-doctoral grant
SFRH/BPD/84044/2012. D.M. Richardson acknowledges support from the
DST-NRF Centre of Excellence for Invasion Biology and the National
Research Foundation (grant 85417).info:eu-repo/semantics/publishedVersio
The biogeography of South African terrestrial plant invasions
Thousands of plant species have been introduced, intentionally and accidentally, to South Africa from many parts of the world. Alien plants are now conspicuous features of many South African landscapes and hundreds of species have naturalised (i.e. reproduce regularly without human intervention), many of which are also invasive (i.e. have spread over long distances). There is no comprehensive inventory of alien, naturalised, and invasive plants for South Africa, but 327 plant taxa, most of which are invasive, are listed in national legislation. We collated records of 759 plant taxa in 126 families and 418 genera that have naturalised in natural and semi-natural ecosystems. Over half of these naturalised taxa are trees or shrubs, just under a tenth are in the families Fabaceae (73 taxa) and Asteraceae (64); genera with the most species are Eucalyptus,Acacia, and Opuntia. The southern African Plant Invaders Atlas (SAPIA) provides the best data for assessing the extent of invasions at the national scale. SAPIA data show that naturalised plants occur in 83% of quarter-degree grid cells in the country. While SAPIA data highlight general distribution patterns (high alien plant species richness in areas with high native plant species richness and around the main human settlements), an accurate, repeatable method for estimating the area invaded by plants is lacking. Introductions and dissemination of alien plants over more than three centuries, and invasions over at least 120 years (and especially in the last 50 years) have shaped the distribution of alien plants in South Africa. Distribution patterns of naturalised and invasive plants define four ecologically-meaningful clusters or “alien plant species assemblage zones”, each with signature alien plant taxa for which trait-environment interactions can be postulated as strong determinants of success. Some widespread invasive taxa occur in high frequencies across multiple zones; these taxa occur mainly in riparian zones and other azonal habitats,or depend on human-mediated disturbance, which weakens or overcomes the factors that determine specificity to any biogeographical region
The Importance of Conserving Biodiversity Outside of Protected Areas in Mediterranean Ecosystems
Mediterranean-type ecosystems constitute one of the rarest terrestrial biomes and yet they are extraordinarily biodiverse. Home to over 250 million people, the five regions where these ecosystems are found have climate and coastal conditions that make them highly desirable human habitats. The current conservation landscape does not reflect the mediterranean biome's rarity and its importance for plant endemism. Habitat conversion will clearly outpace expansion of formal protected-area networks, and conservationists must augment this traditional strategy with new approaches to sustain the mediterranean biota. Using regional scale datasets, we determine the area of land in each of the five regions that is protected, converted (e.g., to urban or industrial), impacted (e.g., intensive, cultivated agriculture), or lands that we consider to have conservation potential. The latter are natural and semi-natural lands that are unprotected (e.g., private range lands) but sustain numerous native species and associated habitats. Chile has the greatest proportion of its land (75%) in this category and California-Mexico the least (48%). To illustrate the potential for achieving mediterranean biodiversity conservation on these lands, we use species-area curves generated from ecoregion scale data on native plant species richness and vertebrate species richness. For example, if biodiversity could be sustained on even 25% of existing unprotected, natural and semi-natural lands, we estimate that the habitat of more than 6,000 species could be represented. This analysis suggests that if unprotected natural and semi-natural lands are managed in a manner that allows for persistence of native species, we can realize significant additional biodiversity gains. Lasting biodiversity protection at the scale needed requires unprecedented collaboration among stakeholders to promote conservation both inside and outside of traditional protected areas, including on lands where people live and work
Psychoeducation and the family burden in schizophrenia: a randomized controlled trial
Abstract Background The majority of patients with schizophrenia live with their relatives in Pakistan, thereby families experience a considerable burden. We aimed to study the impact of psychoeducation on the burden of schizophrenia on the family in a randomised controlled trial. Methods A total of 108 patients with schizophrenia and their family members from the outpatient department of a teaching hospital in Lahore, Pakistan were randomised. Both groups received psychotropic drugs but one group received psychoeducation in addition. Family burden was assessed at the time of recruitment and at 6 months post intervention. Results In all, 99 patients and their relatives completed the treatment. There was significant reduction in burden at post-intervention assessment in the psychoeducation group based on intention to treat analysis. Conclusion Family psychoeducation can be an important intervention for patients with schizophrenia in Pakistan.</p
- …
