270 research outputs found
‘‘Lozenge’’ contour plots in scattering from polymer networks
We present a consistent explanation for the appearance of “lozenge” shapes in contour plots of the two dimensional scattering intensity from stretched polymer networks. By explicitly averaging over quenched variables in a tube model, we show that lozenge patterns arise as a result of chain material that is not directly deformed by the stretch. We obtain excellent agreement with experimental data
Contamination Control and Assay Results for the Majorana Demonstrator Ultra Clean Components
The MAJORANA DEMONSTRATOR is a neutrinoless double beta decay experiment
utilizing enriched Ge-76 detectors in 2 separate modules inside of a common
solid shield at the Sanford Underground Research Facility. The DEMONSTRATOR has
utilized world leading assay sensitivities to develop clean materials and
processes for producing ultra-pure copper and plastic components. This
experiment is now operating, and initial data provide new insights into the
success of cleaning and processing. Post production copper assays after the
completion of Module 1 showed an increase in U and Th contamination in finished
parts compared to starting bulk material. A revised cleaning method and
additional round of surface contamination studies prior to Module 2
construction have provided evidence that more rigorous process control can
reduce surface contamination. This article describes the assay results and
discuss further studies to take advantage of assay capabilities for the purpose
of maintaining ultra clean fabrication and process design.Comment: Proceedings of Low Radioactivity Techniques (LRT May 2017, Seoul
Low Background Materials and Fabrication Techniques for Cables and Connectors in the Majorana Demonstrator
The MAJORANA Collaboration is searching for the neutrinoless double-beta
decay of the nucleus Ge-76. The MAJORANA DEMONSTRATOR is an array of germanium
detectors deployed with the aim of implementing background reduction techniques
suitable for a tonne scale Ge-76-based search (the LEGEND collaboration). In
the DEMONSTRATOR, germanium detectors operate in an ultra-pure vacuum cryostat
at 80 K. One special challenge of an ultra-pure environment is to develop
reliable cables, connectors, and electronics that do not significantly
contribute to the radioactive background of the experiment. This paper
highlights the experimental requirements and how these requirements were met
for the MAJORANA DEMONSTRATOR, including plans to upgrade the wiring for higher
reliability in the summer of 2018. Also described are requirements for LEGEND
R&D efforts underway to meet these additional requirements.Comment: Proceedings of LRT 201
Modelling of Multi-Agent Systems: Experiences with Membrane Computing and Future Challenges
Formal modelling of Multi-Agent Systems (MAS) is a challenging task due to
high complexity, interaction, parallelism and continuous change of roles and
organisation between agents. In this paper we record our research experience on
formal modelling of MAS. We review our research throughout the last decade, by
describing the problems we have encountered and the decisions we have made
towards resolving them and providing solutions. Much of this work involved
membrane computing and classes of P Systems, such as Tissue and Population P
Systems, targeted to the modelling of MAS whose dynamic structure is a
prominent characteristic. More particularly, social insects (such as colonies
of ants, bees, etc.), biology inspired swarms and systems with emergent
behaviour are indicative examples for which we developed formal MAS models.
Here, we aim to review our work and disseminate our findings to fellow
researchers who might face similar challenges and, furthermore, to discuss
important issues for advancing research on the application of membrane
computing in MAS modelling.Comment: In Proceedings AMCA-POP 2010, arXiv:1008.314
The Status and Initial Results of the MAJORANA DEMONSTRATOR Experiment
Neutrinoless double-beta decay searches play a major role in determining the
nature of neutrinos, the existence of a lepton violating process, and the
effective Majorana neutrino mass. The MAJORANA Collaboration assembled an array
of high purity Ge detectors to search for neutrinoless double-beta decay in
Ge-76. The MAJORANA DEMONSTRATOR is comprised of 44.1 kg (29.7 kg enriched in
Ge-76) of Ge detectors divided between two modules contained in a
low-background shield at the Sanford Underground Research Facility in Lead,
South Dakota, USA. The initial goals of the DEMONSTRATOR are to establish the
required background and scalability of a Ge-based next-generation ton-scale
experiment. Following a commissioning run that started in 2015, the first
detector module started low-background data production in early 2016. The
second detector module was added in August 2016 to begin operation of the
entire array. We discuss results of the initial physics runs, as well as the
status and physics reach of the full MAJORANA DEMONSTRATOR experiment.Comment: Proceedings of the MEDEX'17 meeting (Prague, May 29 - June 2, 2017
Signal Transmission in the Auditory System
Contains table of contents for Section 3, an introduction and reports on five research projects.National Institutes of Health Grant R01-DC-00194National Institutes of Health Grant P01-DC-00119Charles S. Draper Laboratory Contract DL-H-496015National Institutes of Health Grant R01 DC00238National Institutes of Health Grant R01-DC02258National Institutes of Health Grant T32-DC00038National Institutes of Health Grant RO1 DC00235National Institutes of Health Grant P01-DC00361National Institutes of Health Contract N01-DC-6-210
The Large Enriched Germanium Experiment for Neutrinoless Double Beta Decay (LEGEND)
The observation of neutrinoless double-beta decay (0)
would show that lepton number is violated, reveal that neutrinos are Majorana
particles, and provide information on neutrino mass. A discovery-capable
experiment covering the inverted ordering region, with effective Majorana
neutrino masses of 15 - 50 meV, will require a tonne-scale experiment with
excellent energy resolution and extremely low backgrounds, at the level of
0.1 count /(FWHMtyr) in the region of the signal. The
current generation Ge experiments GERDA and the MAJORANA DEMONSTRATOR
utilizing high purity Germanium detectors with an intrinsic energy resolution
of 0.12%, have achieved the lowest backgrounds by over an order of magnitude in
the 0 signal region of all 0
experiments. Building on this success, the LEGEND collaboration has been formed
to pursue a tonne-scale Ge experiment. The collaboration aims to develop
a phased 0 experimental program with discovery potential
at a half-life approaching or at years, using existing resources as
appropriate to expedite physics results.Comment: Proceedings of the MEDEX'17 meeting (Prague, May 29 - June 2, 2017
Signal Transmission in the Auditory System
Contains table of contents for Section 3, an introduction and reports on seven research projects.National Institutes of Health Grant P01-DC-00119National Institutes of Health Grant R01-DC-00194National Institutes of Health Grant R01 DC00238National Institutes of Health Grant R01-DC02258National Institutes of Health Grant T32-DC00038National Institutes of Health Grant P01-DC00361National Institutes of Health Grant 2RO1 DC00235National Institutes of Health Contract N01-DC2240
Phenotypic Characterization of a Major Quantitative Disease Resistance Locus for Partial Resistance to Phytophthora sojae
Major quantitative disease resistance loci (QDRLs) are rare in the Phytophthora sojae (Kaufmann and Gerdemann)–soybean [Glycine max (L). Merr.] pathosystem. A major QDRL on chromosome 18 (QDRL-18) was identified in PI 427105B and PI 427106. QDRL-18 represents a valuable resistance source for breeding programs. Thus, our objectives were to determine its isolate specificity and measure its effect on yield and resistance to both P. sojae and other soybean pathogens. We characterized near isogenic lines (NILs) developed from F7 recombinant inbred lines heterozygous at QDRL-18; NILs represent introgressions from PI 427105B, PI 427106, and susceptible ‘OX20- 8’. The introgressions from PI 427105B and PI 427106 increased resistance to P. sojae by 11 to 20% and 35 to 40%, respectively, based on laboratory and greenhouse assays, and increased yield by 13 to 29% under disease conditions. The resistant introgression from PI 427105B was also effective against seven P. sojae isolates with no isolate specificity detected. Based on quantitative polymerase chain reaction assays, NILs with the susceptible introgression had significantly higher relative levels of P. sojae colonization 48 h after inoculation. No pleiotropic effects for resistance to either soybean cyst nematode or Fusarium graminearum were detected. This information improves soybean breeders’ ability to make informed decisions regarding the deployment of QDRL-18 in their respective breeding programs
Do Electronic Health Records Help or Hinder Medical Education?
Many countries worldwide are digitizing patients' medical records. What impact will these electronic health records have upon medical education? This debate examines the threats and opportunities
- …
