225 research outputs found

    ‘‘Lozenge’’ contour plots in scattering from polymer networks

    Get PDF
    We present a consistent explanation for the appearance of “lozenge” shapes in contour plots of the two dimensional scattering intensity from stretched polymer networks. By explicitly averaging over quenched variables in a tube model, we show that lozenge patterns arise as a result of chain material that is not directly deformed by the stretch. We obtain excellent agreement with experimental data

    Effects of Brick Burning on Microbial Biomass and C/N Ratio in Selected Soil Profiles in the Eastern Region of Bangladesh

    Get PDF
    The pH values in the profiles of unburnt (agricultural land) soils were found to increase as a function of soil depth and burning (400 to 1000℃) of the soils increased average pH by 8%. The average sand content of the burnt (soil around brick kilns) soil profiles was increased by 245%, while 39 and 36% decreased the silt and clay contents. Soil organic carbon (Corg) in the unburnt soils (0-20 cm) at different agro-ecological zones in the eastern region of Bangladesh ranged from 0.8 and 1.4%, whereas the content of microbial biomass carbon (Cmic) in the studied unburnt soils ranged between 5 and 7% of the total Corg, suggesting that the microbial biomass releasing considerable amounts of carbon in soil while burning of the soils drastically reduced this contribution to about 1%. The values of soil Cmic in the unburnt soils were approximately 2 to 6 times higher in the topsoils than the subsoils (20-60 cm). Variable rainfall, temperature and soil fertility had an overriding influence, which was reflected by the average minimum (276 ÎŒg g(-1)) and maximum (439) amounts of soil Cmic in Moulvibazar and Cox' Bazar sites. The Cmic decreased upon soil burning by 92% of its original average value (346 ÎŒg g(-1)) in the soil profile of up to 100 cm. Burning of topsoils strikingly increased the Corg/Cmic ratio by about 6 to 9 times, while reduced the C/N ratio by about 1.5 to 2.5 times. The average loss of Corg, available and total N due to burning of the soils were 66, 72 and 44% (increase over average content of unburnt soil: IOAC), respectively, which suggests that the burning of the soils offset the essential roles of soil microorganisms, reduced soil fertility and soil microbial contribution

    Electronic health records in outpatient clinics: Perspectives of third year medical students

    Get PDF
    Abstract Background United States academic medical centers are increasingly incorporating electronic health records (EHR) into teaching settings. We report third year medical students' attitudes towards clinical learning using the electronic health record in ambulatory primary care clinics. Methods In academic year 2005–06, 60 third year students were invited to complete a questionnaire after finishing the required Ambulatory Medicine/Family Medicine clerkship. The authors elicited themes for the questionnaire by asking a focus group of third year students how using the EHR had impacted their learning. Five themes emerged: organization of information, access to online resources, prompts from the EHR, personal performance (charting and presenting), and communication with patients and preceptors. The authors added a sixth theme: impact on student and patient follow-up. The authors created a 21-item questionnaire, based on these themes that used a 5-point Likert scale from "Strongly Agree" to "Strongly Disagree". The authors emailed an electronic survey link to each consenting student immediately following their clerkship experience in Ambulatory Medicine/Family Medicine. Results 33 of 53 consenting students (62%) returned completed questionnaires. Most students liked the EHR's ability to organize information, with 70% of students responding that essential information was easier to find electronically. Only 36% and 33% of students reported accessing online patient information or clinical guidelines more often when using the EHR than when using paper charts. Most students (72%) reported asking more history questions due to EHR prompts, and 39% ordered more clinical preventive services. Most students (69%) reported that the EHR improved their documentation. 39% of students responded that they received more feedback on their EHR notes compared to paper chart notes. Only 64% of students were satisfied with the doctor-patient communication with the EHR, and 48% stated they spent less time looking at the patient. Conclusion Third year medical students reported generally positive attitudes towards using the EHR in the ambulatory setting. They reported receiving more feedback on their electronic charts than on paper charts. However, students reported significant concerns about the potential impact of the EHR on their ability to conduct the doctor-patient encounter.Peer Reviewe

    Do Electronic Health Records Help or Hinder Medical Education?

    Get PDF
    Many countries worldwide are digitizing patients' medical records. What impact will these electronic health records have upon medical education? This debate examines the threats and opportunities

    Modelling of Multi-Agent Systems: Experiences with Membrane Computing and Future Challenges

    Full text link
    Formal modelling of Multi-Agent Systems (MAS) is a challenging task due to high complexity, interaction, parallelism and continuous change of roles and organisation between agents. In this paper we record our research experience on formal modelling of MAS. We review our research throughout the last decade, by describing the problems we have encountered and the decisions we have made towards resolving them and providing solutions. Much of this work involved membrane computing and classes of P Systems, such as Tissue and Population P Systems, targeted to the modelling of MAS whose dynamic structure is a prominent characteristic. More particularly, social insects (such as colonies of ants, bees, etc.), biology inspired swarms and systems with emergent behaviour are indicative examples for which we developed formal MAS models. Here, we aim to review our work and disseminate our findings to fellow researchers who might face similar challenges and, furthermore, to discuss important issues for advancing research on the application of membrane computing in MAS modelling.Comment: In Proceedings AMCA-POP 2010, arXiv:1008.314

    Contamination Control and Assay Results for the Majorana Demonstrator Ultra Clean Components

    Full text link
    The MAJORANA DEMONSTRATOR is a neutrinoless double beta decay experiment utilizing enriched Ge-76 detectors in 2 separate modules inside of a common solid shield at the Sanford Underground Research Facility. The DEMONSTRATOR has utilized world leading assay sensitivities to develop clean materials and processes for producing ultra-pure copper and plastic components. This experiment is now operating, and initial data provide new insights into the success of cleaning and processing. Post production copper assays after the completion of Module 1 showed an increase in U and Th contamination in finished parts compared to starting bulk material. A revised cleaning method and additional round of surface contamination studies prior to Module 2 construction have provided evidence that more rigorous process control can reduce surface contamination. This article describes the assay results and discuss further studies to take advantage of assay capabilities for the purpose of maintaining ultra clean fabrication and process design.Comment: Proceedings of Low Radioactivity Techniques (LRT May 2017, Seoul

    Functional dissection of the chickpea (Cicer arietinum l.) stay-green phenotype associated with molecular variation at an ortholog of mendel’s i gene for cotyledon color: Implications for crop production and carotenoid biofortification

    Get PDF
    “Stay-green” crop phenotypes have been shown to impact drought tolerance and nutritional content of several crops. We aimed to genetically describe and functionally dissect the particular stay-green phenomenon found in chickpeas with a green cotyledon color of mature dry seed and investigate its potential use for improvement of chickpea environmental adaptations and nutritional value. We examined 40 stay-green accessions and a set of 29 BC2F4-5 stay-green introgression lines using a stay-green donor parent ICC 16340 and two Indian elite cultivars (KAK2, JGK1) as recurrent parents. Genetic studies of segregating populations indicated that the green cotyledon trait is controlled by a single recessive gene that is invariantly associated with the delayed degreening (extended chlorophyll retention). We found that the chickpea ortholog of Mendel’s I locus of garden pea, encoding a SGR protein as very likely to underlie the persistently green cotyledon color phenotype of chickpea. Further sequence characterization of this chickpea ortholog CaStGR1 (CaStGR1, for carietinum stay-green gene 1) revealed the presence of five different molecular variants (alleles), each of which is likely a loss-of-function of the chickpea protein (CaStGR1) involved in chlorophyll catabolism. We tested the wild type and green cotyledon lines for components of adaptations to dry environments and traits linked to agronomic performance in different experimental systems and different levels of water availability. We found that the plant processes linked to disrupted CaStGR1 gene did not functionality affect transpiration efficiency or water usage. Photosynthetic pigments in grains, including provitaminogenic carotenoids important for human nutrition, were 2–3-fold higher in the stay-green type. Agronomic performance did not appear to be correlated with the presence/absence of the stay-green allele. We conclude that allelic variation in chickpea CaStGR1 does not compromise traits linked to environmental adaptation and agronomic performance, and is a promising genetic technology for biofortification of provitaminogenic carotenoids in chickpea

    The Large Enriched Germanium Experiment for Neutrinoless Double Beta Decay (LEGEND)

    Get PDF
    The observation of neutrinoless double-beta decay (0ÎœÎČÎČ{\nu}{\beta}{\beta}) would show that lepton number is violated, reveal that neutrinos are Majorana particles, and provide information on neutrino mass. A discovery-capable experiment covering the inverted ordering region, with effective Majorana neutrino masses of 15 - 50 meV, will require a tonne-scale experiment with excellent energy resolution and extremely low backgrounds, at the level of ∌\sim0.1 count /(FWHM⋅\cdott⋅\cdotyr) in the region of the signal. The current generation 76^{76}Ge experiments GERDA and the MAJORANA DEMONSTRATOR utilizing high purity Germanium detectors with an intrinsic energy resolution of 0.12%, have achieved the lowest backgrounds by over an order of magnitude in the 0ÎœÎČÎČ{\nu}{\beta}{\beta} signal region of all 0ÎœÎČÎČ{\nu}{\beta}{\beta} experiments. Building on this success, the LEGEND collaboration has been formed to pursue a tonne-scale 76^{76}Ge experiment. The collaboration aims to develop a phased 0ÎœÎČÎČ{\nu}{\beta}{\beta} experimental program with discovery potential at a half-life approaching or at 102810^{28} years, using existing resources as appropriate to expedite physics results.Comment: Proceedings of the MEDEX'17 meeting (Prague, May 29 - June 2, 2017
    • 

    corecore