5 research outputs found

    Carotenoids from the ripening bacterium <i>Brevibacterium linens</i> impart color to the rind of the French cheese, Fourme de Montbrison (PDO)

    No full text
    International audienceRind color of some high-value PDO cheeses is related to the presence of carotenoids, but little is known about the structure of the pigmented compounds and their origin. Our objective was to describe the carotenoids extracted from the rind of a French cheese, Fourme de Montbrison, and to compare them with the pigments produced by a bacterial strain used as an adjunct culture in the cheese ripening process. Eleven carotenoids were detected in the cheese rinds or in the biomass of Brevibacterium linens. Most of the carotenoids from the rinds belonged to the aryl (aromatic) carotenoid family, including hydroxylated and non-hydroxylated isorenieratene. Chlorobactene, a carotenoid rarely found in food products, was also detected. Agelaxanthin A was identified in the cheese rinds as well as in the B. linens biomass. Occurrence of this compound was previously described in only one scientific publication, where it was isolated from the sponge Agela schmidtii

    Strong effect of Penicillium roqueforti populations on volatile and metabolic compounds responsible for aromas, flavor and texture in blue cheeses

    No full text
    International audienceStudies of food microorganism domestication can provide important insight into adaptation mechanisms and lead to commercial applications. Penicillium roqueforti is a fungus with four genetically differentiated populations, two of which were independently domesticated for blue cheese-making, with the other two populations thriving in other environments. Most blue cheeses are made with strains from a single P. roqueforti population, whereas Roquefort cheeses are inoculated with strains from a second population. We made blue cheeses in accordance with the production specifications for Roquefort-type cheeses, inoculating each cheese with a single P. roqueforti strain, using a total of three strains from each of the four populations. We investigated differences between the cheeses made with the strains from the four P. roqueforti populations, in terms of the induced flora, the proportion of blue color, water activity and the identity and abundance of aqueous and organic metabolites as proxies for proteolysis and lipolysis as well as volatile compounds responsible for flavor and aroma. We found that the population-of-origin of the P. roqueforti strains used for inoculation had a minor impact on bacterial diversity and no effect on the abundance of the main microorganism. The cheeses produced with P. roqueforti strains from cheese populations had a higher percentage of blue area and a higher abundance of the volatile compounds typical of blue cheeses, such as methyl ketones and secondary alcohols. In particular, the Roquefort strains produced higher amounts of these aromatic compounds, partly due to more efficient proteolysis and lipolysis. The Roquefort strains also led to cheeses with a lower water availability, an important feature for preventing spoilage in blue cheeses, which is subject to controls for the sale of Roquefort cheese. The typical appearance and flavors of blue cheeses thus result from human selection on P. roqueforti, leading to the acquisition of specific features by the two cheese populations. These findings have important implications for our understanding of adaptation and domestication, and for cheese improvement

    Domestication in dry-cured meat Penicillium fungi: convergent specific phenotypes and horizontal gene transfers without strong genetic subdivision

    No full text
    Abstract Many fungi have been domesticated for food production, with genetic differentiation between populations from food and wild environments, and food populations often acquiring beneficial traits through horizontal gene transfers. We studied the population structures and phenotypes of two distantly related Penicillium species used for dry-cured meat production, P. nalgiovense , the most common species in the dry-cured meat food industry, and P. salamii , used locally by farms. Both species displayed low genetic diversity, with no differentiation between strains isolated from dry-cured meat and those from other environments. Nevertheless, the strains collected from dry-cured meat within each species displayed slower proteolysis and lipolysis than their wild-type conspecifics, and those of P. nalgiovense were whiter. Phenotypically, the non-dry-cured meat strains were more similar to their sister species than to their conspecific dry-cured meat strains, indicating an evolution of specific phenotypes in dry-cured meat strains. A comparison of available Penicillium genomes from various environments revealed evidence of multiple horizontal gene transfers, particularly between P. nalgiovense and P. salamii . Some horizontal gene transfers involving P. biforme , also found in dry-cured meat products, were also detected. We also detected positive and purifying selection based on amino-acid changes. Our genetic and phenotypic findings suggest that human selection has shaped the P. salamii and P. nalgiovense populations used for dry-cured meat production, which constitutes domestication. Several genetic and phenotypic changes were similar in P. salamii , P. nalgiovense, and P. biforme , providing an interesting case of convergent adaptation to the same human-made environment

    Generation of diversity in the blue cheese mold Penicillium roqueforti and identification of pleiotropic QTL for key cheese-making phenotypes

    No full text
    International audienceAbstract Elucidating the genomic architecture of quantitative traits is essential for our understanding of adaptation and for breeding in domesticated organisms. Penicillium roqueforti is the mold used worldwide for the blue cheese maturation, contributing to flavors through proteolytic and lipolytic activities. The two domesticated cheese populations display very little genetic diversity, but are differentiated and carry opposite mating types. We produced haploid F1 progenies from five crosses, using parents belonging to cheese and non-cheese populations. Analyses of high-quality genome assemblies of the parental strains revealed five large translocations, two having occurred via a circular intermediate. Offspring genotyping with genotype-by-sequencing (GBS) revealed several genomic regions with segregation distortion, possibly linked to degeneration in cheese lineages. We found transgressions for several traits relevant for cheese making, with offspring having more extreme trait values than parental strains. We identified quantitative trait loci (QTLs) for colony color, lipolysis, proteolysis, extrolite production, including mycotoxins, but not for growth rates. Some genomic regions appeared rich in QTLs for both lipid and protein metabolism, and other regions for the production of multiple extrolites, indicating that QTLs have pleiotropic impacts. Some QTLs corresponded to known biosynthetic gene clusters, e.g., for the production of melanin or extrolites. F1 hybrids constitute valuable strains for cheese producers, with new traits and genetic diversity, and allowed identifying target genomic regions for traits important in cheese making, paving the way for strain improvement. The findings further contribute to our understanding of the genetic mechanisms underlying rapid adaptation, revealing convergent adaptation targeting major regulators
    corecore