162 research outputs found

    Control of friction forces with stationary wave piezoelectric actuator

    Get PDF
    "In the field of the research on piezoelectric motors, the control of friction forces by ultrasonic waves was studied mainly from an experimental point of view [1]. The principle of friction force reduction by imposed mechanical vibrations in unlubricated contacts was recently studied in order to reduce the friction losses in an internal combustion engine with Langevin type actuators [2]. This article deals with the advantages of flexural stationary wave piezoelectric actuators in the control of the friction forces thanks to their high pressures generated at high frequencies (>10 Khz). The use of specific contact geometry which is defined by the Hertz theory associated with partial slip contact conditions, allows optimizing the lubrication effect. In the case of piezoelectric torque limiter application, the design and the numerical simulation of dedicated piezoelectric actuator are compared. In agreement with the contact modeling, the characterization of the complete actuator on mechanical test bench validates the ""torque limiter"" function and the optimization of lubrication principle with dedicated contact geometry

    Controllability of spin-boson systems

    Get PDF
    In this paper we study the so-called spin-boson system, namely {a two-level system} in interaction with a distinguished mode of a quantized bosonic field. We give a brief description of the controlled Rabi and Jaynes--Cummings models and we discuss their appearance in the mathematics and physics literature. We then study the controllability of the Rabi model when the control is an external field acting on the bosonic part. Applying geometric control techniques to the Galerkin approximation and using perturbation theory to guarantee non-resonance of the spectrum of the drift operator, we prove approximate controllability of the system, for almost every value of the interaction parameter

    Incremental Contributions of FbaA and Other Impetigo-Associated Surface Proteins to Fitness and Virulence of a Classical Group A Streptococcal Skin Strain

    Get PDF
    Group A streptococci (GAS) are highly prevalent human pathogens whose primary ecological niche is the superficial epithelial layers of the throat and/or skin. Many GAS strains having a strong tendency to cause pharyngitis are distinct from strains that tend to cause impetigo; thus, genetic differences between them may confer host tissue-specific virulence. In this study, the FbaA surface protein gene is found to be present in most skin specialist strains, but largely absent from a genetically-related subset of pharyngitis isolates. Using an DeltafbaA mutant constructed in the impetigo strain Alab49, loss of FbaA resulted in a slight but significant decrease in GAS fitness in a humanized mouse model for impetigo; the DeltafbaA mutant also exhibited decreased survival in whole human blood due to phagocytosis. Using assays with highly sensitive outcome measures, Alab49DeltafbaA was compared to other isogenic mutants lacking virulence genes known to be disproportionately associated with classical skin strains. FbaA and PAM (i.e., M53 protein) have additive effects in promoting GAS survival in whole blood. The pilus adhesin tip protein Cpa promotes Alab49 survival in whole blood, and appears to fully account for the antiphagocytic effect attributable to pili. That numerous skin strain-associated virulence factors make slight but significant contributions to virulence underscores the incremental contributions to fitness of individual surface protein genes and the multifactorial nature of GAS-host interactions

    Control of friction forces with stationary wave piezoelectric actuator

    Get PDF
    "In the field of the research on piezoelectric motors, the control of friction forces by ultrasonic waves was studied mainly from an experimental point of view [1]. The principle of friction force reduction by imposed mechanical vibrations in unlubricated contacts was recently studied in order to reduce the friction losses in an internal combustion engine with Langevin type actuators [2]. This article deals with the advantages of flexural stationary wave piezoelectric actuators in the control of the friction forces thanks to their high pressures generated at high frequencies (>10 Khz). The use of specific contact geometry which is defined by the Hertz theory associated with partial slip contact conditions, allows optimizing the lubrication effect. In the case of piezoelectric torque limiter application, the design and the numerical simulation of dedicated piezoelectric actuator are compared. In agreement with the contact modeling, the characterization of the complete actuator on mechanical test bench validates the ""torque limiter"" function and the optimization of lubrication principle with dedicated contact geometry

    Adiabatic passage and ensemble control of quantum systems

    Full text link
    This paper considers population transfer between eigenstates of a finite quantum ladder controlled by a classical electric field. Using an appropriate change of variables, we show that this setting can be set in the framework of adiabatic passage, which is known to facilitate ensemble control of quantum systems. Building on this insight, we present a mathematical proof of robustness for a control protocol -- chirped pulse -- practiced by experimentalists to drive an ensemble of quantum systems from the ground state to the most excited state. We then propose new adiabatic control protocols using a single chirped and amplitude shaped pulse, to robustly perform any permutation of eigenstate populations, on an ensemble of systems with badly known coupling strengths. Such adiabatic control protocols are illustrated by simulations achieving all 24 permutations for a 4-level ladder

    Nonlinear effect on quantum control for two-level systems

    Full text link
    The traditional quantum control theory focuses on linear quantum system. Here we show the effect of nonlinearity on quantum control of a two-level system, we find that the nonlinearity can change the controllability of quantum system. Furthermore, we demonstrate that the Lyapunov control can be used to overcome this uncontrollability induced by the nonlinear effect.Comment: 4 pages, 5 figure

    One hundred second bit-flip time in a two-photon dissipative oscillator

    Full text link
    Current implementations of quantum bits (qubits) continue to undergo too many errors to be scaled into useful quantum machines. An emerging strategy is to encode quantum information in the two meta-stable pointer states of an oscillator exchanging pairs of photons with its environment, a mechanism shown to provide stability without inducing decoherence. Adding photons in these states increases their separation, and macroscopic bit-flip times are expected even for a handful of photons, a range suitable to implement a qubit. However, previous experimental realizations have saturated in the millisecond range. In this work, we aim for the maximum bit-flip time we could achieve in a two-photon dissipative oscillator. To this end, we design a Josephson circuit in a regime that circumvents all suspected dynamical instabilities, and employ a minimally invasive fluorescence detection tool, at the cost of a two-photon exchange rate dominated by single-photon loss. We attain bit-flip times of the order of 100 seconds for states pinned by two-photon dissipation and containing about 40 photons. This experiment lays a solid foundation from which the two-photon exchange rate can be gradually increased, thus gaining access to the preparation and measurement of quantum superposition states, and pursuing the route towards a logical qubit with built-in bit-flip protection

    From least action in electrodynamics to magnetomechanical energy -- a review

    Full text link
    The equations of motion for electromechanical systems are traced back to the fundamental Lagrangian of particles and electromagnetic fields, via the Darwin Lagrangian. When dissipative forces can be neglected the systems are conservative and one can study them in a Hamiltonian formalism. The central concepts of generalized capacitance and inductance coefficients are introduced and explained. The problem of gauge independence of self-inductance is considered. Our main interest is in magnetomechanics, i.e. the study of systems where there is exchange between mechanical and magnetic energy. This throws light on the concept of magnetic energy, which according to the literature has confusing and peculiar properties. We apply the theory to a few simple examples: the extension of a circular current loop, the force between parallel wires, interacting circular current loops, and the rail gun. These show that the Hamiltonian, phase space, form of magnetic energy has the usual property that an equilibrium configuration corresponds to an energy minimum.Comment: 29 pages, 9 figures, 65 reference

    Newly diagnosed rheumatic heart disease among indigenous populations in the Pacific

    Get PDF
    Objectives Rheumatic heart disease (RHD) remains the leading acquired heart disease in the young worldwide. We aimed at assessing outcomes and influencing factors in the contemporary era. Methods Hospital-based cohort in a high-income island nation where RHD remains endemic and the population is captive. All patients admitted with newly diagnosed RHD according to World Heart Federation echocardiographic criteria were enrolled (2005–2013). The incidence of major cardiovascular events (MACEs) including heart failure, peripheral embolism, stroke, heart valve intervention and cardiovascular death was calculated, and their determinants identified. Results Of the 396 patients, 43.9% were male with median age 18 years (IQR 10–40)). 127 (32.1%) patients presented with mild, 131 (33.1%) with moderate and 138 (34.8%) with severe heart valve disease. 205 (51.8%) had features of acute rheumatic fever. 106 (26.8%) presented with at least one MACE. Among the remaining 290 patients, after a median follow-up period of 4.08 (95% CI 1.84 to 6.84) years, 7 patients (2.4%) died and 62 (21.4%) had a first MACE. The annual incidence of first MACE and of heart failure were 59.05‰ (95% CI 44.35 to 73.75) and 29.06‰ (95% CI 19.29 to 38.82), respectively. The severity of RHD at diagnosis (moderate vs mild HR 3.39 (0.95 to 12.12); severe vs mild RHD HR 10.81 (3.11 to 37.62), p<0.001) and ongoing secondary prophylaxis at follow-up (HR 0.27 (0.12 to 0.63), p=0.01) were the two most influential factors associated with MACE. Conclusions Newly diagnosed RHD is associated with poor outcomes, mainly in patients with moderate or severe valve disease and no secondary prophylaxis
    • 

    corecore