768 research outputs found

    NGC 3627: a galaxy-dwarf collision?

    Get PDF
    Group galaxies very often show distinct signs of interaction with both companion galaxies and the intragroup medium. X-ray observations are particularly helpful because they provide information on the temperatures and the densities of the hot gas in galaxies and intergalactic space. This can put important constraints on the nature and timescales of these interactions. We use the XMM-Newton X-ray observations of NGC 3627 in the Leo Triplet galaxy group to explain peculiar features visible in the polarized radio maps. We analyzed soft X-ray (0.2-1 keV) emission from NGC 3627 to study the distribution of the hot gas and its temperature in different areas of the galaxy. Any change throughout the disk can reflect distortions visible in the radio polarized emission. We also studied two bright point sources that are probably tightly linked to the evolution of the galaxy. We find an increase in the temperature of the hot gas in the area of the polarized radio ridge in the western arm of the galaxy. In the eastern part of the disk we find two ultra-luminous X-ray sources. We note a large hot gas temperature difference (by a factor of 2) between the two bar ends. The polarized radio ridge in the western arm of NGC 3627 is most likely formed by ram-pressure effects caused by the movement of the galaxy through the intragroup medium. To explain the distortions visible in the eastern part of the disk in polarized radio maps, the asymmetry of the bar, and the distortion of the eastern arm, we propose a recent collision of NGC 3627 with a dwarf companion galaxy.Comment: 8 pages, 6 figures, 5 tables. Accepted for publication in Astronomy and Astrophysic

    X-ray Phase-Resolved Spectroscopy of PSRs B0531+21, B1509-58, and B0540-69 with RXTE

    Full text link
    The Rossi X-ray Timing Explorer ({\sl RXTE}) has made hundreds of observations on three famous young pulsars (PSRs) B0531+21 (Crab), B1509-58, and B0540-69. Using the archive {\sl RXTE} data, we have studied the phase-resolved spectral properties of these pulsars in details. The variation of the X-ray spectrum with phase of PSR B0531+21 is confirmed here much more precisely and more details are revealed than the previous studies: the spectrum softens from the beginning of the first pulse, turns to harden right at the pulse peak and becomes the hardest at the bottom of the bridge, softens gradually until the second peak, and then softens rapidly. Different from the previous studies, we found that the spectrum of PSR B1509-58 is significantly harder in the center of the pulse, which is also in contrast to that of PSR B0531+21. The variation of the X-ray spectrum of PSR B0540-69 seems similar to that of PSR B1509-58, but with a lower significance. Using the about 10 years of data span, we also studied the real time evolution of the spectra of these pulsars, and no significant evolution has been detected. We have discussed about the constraints of these results on theoretical models of pulsar X-ray emission.Comment: 42 pages, 24 figure

    SN1993J VLBI (I): The Center of the Explosion and a Limit on Anisotropic Expansion

    Get PDF
    Phase-referenced VLBI observations of supernova 1993J at 24 epochs, from 50 days after shock breakout to the present, allowed us to determine the coordinates of the explosion center relative to the quasi-stationary core of the host galaxy M81 with an accuracy of 45 micro-arcsec, and to determine the nominal proper motion of the geometric center of the radio shell with an accuracy of 9micro-arcsec/yr. The uncertainties correspond to 160 AU for the position and 160 km/s for the proper motion at the distance of the source of 3.63 Mpc. After correcting for the expected galactic proper motion of the supernova around the core of M81 using HI rotation curves, we obtain a peculiar proper motion of the radio shell center of only 320 +/- 160 km/s to the south, which limits any possible one-sided expansion of the shell. We also find that the shell is highly circular, the outer contours in fact being circular to within 3%. Combining our proper motion values with the degree of circular symmetry, we find that the expansion of the shockfront from the explosion center is isotropic to within 5.5% in the plane of the sky. This is a more fundamental result on isotropic expansion than can be derived from the circularity of the images alone. The brightness of the radio shell, however, varies along the ridge and systematically changes with time. The degree of isotropy in the expansion of the shockfront contrasts with the asymmetries and polarization found in optical spectral lines. Asymmetric density distributions in the ejecta or more likely in the circumstellar medium, are favored to reconcile the radio and optical results. We see no sign of any disk-like density distribution of the circumstellar material, with the average axis ratio of the radio shell of SN1993J being less than 1.04.Comment: 21 pages, LaTex + 5 Figures (encapulsated PostScript), Accepted for Publication in the Astrophysical Journa

    The Multi-Colored Hot Interstellar Medium of "The Antennae" Galaxies (NGC 4038/39)

    Full text link
    We report the results of the analysis of the extended soft emission discovered in the Chandra ACIS pointing at the merging system NGC 4038/39 (the Antennae). We present a `multi-color' X-ray image that suggests both extensive absorption by the dust in this system, peaking in the contact region, as well as variations in the temperature of different emitting regions of the hot interstellar medium (ISM). Spectral fits to multi-component thermal emission models confirm this picture and give a first evaluation of the parameters of the hot plasma. We compare the diffuse X-ray emission with radio continuum (6cm), HI, CO, and Hα\alpha images to take a first look at the multi-phase ISM of the Antennae galaxies. We find that the hot (X-ray) and cold (CO) gas have comparable thermal pressures in the two nuclear regions. We also conclude that the displacement between the peak of the diffuse X-ray emission in the north of the galaxy system, towards the inner regions of the northern spiral arm (as defined by Hα\alpha, radio continuum and HI), could result from ram pressure of infalling HI clouds.Comment: Accepted by Ap

    Lotus petal flap and vertical rectus abdominis myocutaneous flap in vulvoperineal reconstruction:a systematic review of differences in complications

    Get PDF
    Background Vulvoperineal defects resulting from surgical treatment of (pre)malignancies may result in reconstructive challenges. The vertical rectus abdominis muscle flap and, more recently, the fasciocutaneous lotus petal flap are often used for reconstruction in this area. The goal of this review is to compare the postoperative complications of application of these flaps.Methods:A comprehensive literature search of the PubMed, MEDLINE and Cochrane Library databases was performed until 6 June 2020. Search terms included the lotus petal flap, vertical rectus abdominis muscle flap and the vulvoperineal area. Articles were independently screened by two researchers according to the PRISMA-guidelines.Results:A total of 1074 citations were retrieved and reviewed, of which 55 were included for full text analysis. Following lotus petal flap reconstructions, the complication rate varied from 0.0% to 69.9%, with more complications concerning the recipient site compared with the donor site complications (26.0% versus 4.5%). Following vertical rectus abdominis muscle flap reconstructions the complication rate varied between 0.0% and 85.7% with almost twice the number of recipient site complications compared to donor site complications (37.1% versus 17.8%).Conclusions:Overall, the lotus petal flap has lower complication rates at both the donor and the recipient site compared with the vertical rectus abdominis muscle flap. When both options seem viable, the lotus petal flap procedure may be preferred on the basis of the reported lower complication rates

    A damaging block-based model for the analysis of the cyclic behaviour of full-scale masonry structures

    Get PDF
    In this paper, a damaging block-based model is proposed for the numerical analysis of the cyclic behaviour of full-scale masonry structures. Solid 3D finite elements governed by a plastic-damage constitutive law in tension and compression are used to model the blocks, while a cohesive-frictional contact-based formulation is developed to simulate their cyclic interaction. The use of tests on small-scale specimens to calibrate the mechanical properties of the numerical model is presented and discussed. The tests belong to a comprehensive experimental campaign performed on calcium silicate brick masonry. The calibrated models are used to simulate in-plane and out-of-plane cyclic tests on masonry walls made of the same material, as well as a quasi-static cyclic pushover test on a full-scale terraced masonry house. The efficiency, the potentialities and the accuracy of the model here proposed are shown and discussed. The capability of explicitly representing structural details (e.g. running bonds) and any in-plane and through-thickness texture of masonry, which appears essential to study the response of masonry structures, is guaranteed by the block-based modelling approach. A good agreement between the numerical results and the experimental outcomes is observed. This allows to validate the model in the cyclic response as well as the strategy proposed for its mechanical characterization

    Chemical enrichment of the complex hot ISM of the Antennae galaxies: I. Spatial and spectral analysis of the diffuse X-ray emission

    Full text link
    We present an analysis of the properties of the hot interstellar medium (ISM) in the merging pair of galaxies known as The Antennae (NGC 4038/39), performed using the deep, coadded ~411 ks Chandra ACIS-S data set. These deep X-ray observations and Chandra's high angular resolution allow us to investigate the properties of the hot ISM with unprecedented spatial and spectral resolution. Through a spatially resolved spectral analysis, we find a variety of temperatures (from 0.2 to 0.7 keV) and Nh (from Galactic to 2x10^21 cm^-2). Metal abundances for Ne, Mg, Si, and Fe vary dramatically throughout the ISM from sub-solar values (~0.2) up to several times solar.Comment: 33 pages, 18 figures, revised version accepted by Astrophysical Journal Supplement Serie

    X-ray and Radio Timing of the Pulsar in 3C 58

    Full text link
    We present timing data spanning 6.4 yr for the young and energetic PSR J0205+6449, in the supernova remnant 3C 58. Data were obtained with the Rossi X-ray Timing Explorer, the Jodrell Bank Observatory and the Green Bank Telescope. We present phase-coherent timing analyses showing timing noise and two spin-up glitches with fractional frequency increases of ~3.4E-7 near MJD 52555, and ~3.8E-6 between MJDs 52777 and 53062. These glitches are unusually large if the pulsar was created in the historical supernova in 1181 as has been suggested. For the X-ray timing we developed a new unbinned maximum-likelihood method for determining pulse arrival times which performs significantly better than the traditional binned techniques. In addition, we present an X-ray pulse profile analysis of four years of RXTE data showing that the pulsar is detected up to ~40 keV. We also present the first measurement of the phase offset between the radio and X-ray pulse for this source, showing that the radio pulse leads the X-ray pulse by phi=0.10+/-0.01 in phase. We compile all known measurements of the phase offsets between radio and X-ray and radio and gamma-ray pulses for X-ray and gamma-ray pulsars. We show that there is no relationship between pulse period and phase offset, supported by our measurement of the phase offset for PSR J0205+6449.Comment: 19 pages, 12 figures. Published in the Astrophysical Journal. Includes additional data analysis and two new figure
    • …
    corecore