453 research outputs found

    Search for Exotic Strange Quark Matter in High Energy Nuclear Reactions

    Full text link
    We report on a search for metastable positively and negatively charged states of strange quark matter in Au+Pb reactions at 11.6 A GeV/c in experiment E864. We have sampled approximately six billion 10% most central Au+Pb interactions and have observed no strangelet states (baryon number A < 100 droplets of strange quark matter). We thus set upper limits on the production of these exotic states at the level of 1-6 x 10^{-8} per central collision. These limits are the best and most model independent for this colliding system. We discuss the implications of our results on strangelet production mechanisms, and also on the stability question of strange quark matter.Comment: 21 pages, 9 figures, to be published in Nuclear Physics A (Carl Dover memorial edition

    Measurement of D-s(+) and D-s(*+) production in B meson decays and from continuum e(+)e(-) annihilation at √s=10.6 GeV

    Get PDF
    This is the pre-print version of the Article. The official published version can be accessed from the links below. Copyright @ 2002 APSNew measurements of Ds+ and Ds*+ meson production rates from B decays and from qq̅ continuum events near the Υ(4S) resonance are presented. Using 20.8 fb-1 of data on the Υ(4S) resonance and 2.6 fb-1 off-resonance, we find the inclusive branching fractions B(B⃗Ds+X)=(10.93±0.19±0.58±2.73)% and B(B⃗Ds*+X)=(7.9±0.8±0.7±2.0)%, where the first error is statistical, the second is systematic, and the third is due to the Ds+→φπ+ branching fraction uncertainty. The production cross sections σ(e+e-→Ds+X)×B(Ds+→φπ+)=7.55±0.20±0.34pb and σ(e+e-→Ds*±X)×B(Ds+→φπ+)=5.8±0.7±0.5pb are measured at center-of-mass energies about 40 MeV below the Υ(4S) mass. The branching fractions ΣB(B⃗Ds(*)+D(*))=(5.07±0.14±0.30±1.27)% and ΣB(B⃗Ds*+D(*))=(4.1±0.2±0.4±1.0)% are determined from the Ds(*)+ momentum spectra. The mass difference m(Ds+)-m(D+)=98.4±0.1±0.3MeV/c2 is also measured.This work was supported by DOE and NSF (USA), NSERC (Canada), IHEP (China), CEA and CNRS-IN2P3 (France), BMBF (Germany), INFN (Italy), NFR (Norway), MIST (Russia), and PPARC (United Kingdom). Individuals have received support from the Swiss NSF, A. P. Sloan Foundation, Research Corporation, and Alexander von Humboldt Foundation

    Search for rare quark-annihilation decays, B --> Ds(*) Phi

    Full text link
    We report on searches for B- --> Ds- Phi and B- --> Ds*- Phi. In the context of the Standard Model, these decays are expected to be highly suppressed since they proceed through annihilation of the b and u-bar quarks in the B- meson. Our results are based on 234 million Upsilon(4S) --> B Bbar decays collected with the BABAR detector at SLAC. We find no evidence for these decays, and we set Bayesian 90% confidence level upper limits on the branching fractions BF(B- --> Ds- Phi) Ds*- Phi)<1.2x10^(-5). These results are consistent with Standard Model expectations.Comment: 8 pages, 3 postscript figues, submitted to Phys. Rev. D (Rapid Communications

    Search for Strange Quark Matter Produced in Relativistic Heavy Ion Collisions

    Full text link
    We present the final results from Experiment 864 of a search for charged and neutral strange quark matter produced in interactions of 11.5 GeV/c per nucleon Au beams with Pt or Pb targets. Searches were made for strange quark matter with A>4. Approximately 30 billion 10% most central collisions were sampled and no strangelet states with A<100 were observed. We find 90% confidence level upper limits of approximately 10^{-8} per central collision for both charged and neutral strangelets. These limits are for strangelets with proper lifetimes greater than 50 ns. Also limits for H^{0}-d and pineut production are given. The above limits are compared with the predictions of various models. The yields of light nuclei from coalescence are measured and a penalty factor for the addition of one nucleon to the coalescing nucleus is determined. This is useful in gauging the significance of our upper limits and also in planning future searches for strange quark matter.Comment: 35 pages, 18 figures, submitted to Phys. Rev.

    Measurement of the branching fraction for BD0KB^- \to D^0 K^{*-}

    Get PDF
    We present a measurement of the branching fraction for the decay B- --> D0 K*- using a sample of approximately 86 million BBbar pairs collected by the BaBar detector from e+e- collisions near the Y(4S) resonance. The D0 is detected through its decays to K- pi+, K- pi+ pi0 and K- pi+ pi- pi+, and the K*- through its decay to K0S pi-. We measure the branching fraction to be B.F.(B- --> D0 K*-)= (6.3 +/- 0.7(stat.) +/- 0.5(syst.)) x 10^{-4}

    Observation of a significant excess of π0π0\pi^{0}\pi^{0} events in B meson decays

    Get PDF
    We present an observation of the decay B0π0π0B^{0} \to \pi^{0} \pi^{0} based on a sample of 124 million BBˉB\bar{B} pairs recorded by the BABAR detector at the PEP-II asymmetric-energy BB Factory at SLAC. We observe 46±13±346 \pm 13 \pm 3 events, where the first error is statistical and the second is systematic, corresponding to a significance of 4.2 standard deviations including systematic uncertainties. We measure the branching fraction \BR(B^{0} \to \pi^{0} \pi^{0}) = (2.1 \pm 0.6 \pm 0.3) \times 10^{-6}, averaged over B0B^{0} and Bˉ0\bar{B}^{0} decays

    A Precision Measurement of the Lambda_c Baryon Mass

    Full text link
    The Λc+\Lambda_c^+ baryon mass is measured using Λc+ΛKS0K+\Lambda_c^+\to\Lambda K^0_S K^+ and Λc+Σ0KS0K+\Lambda_c^+\to\Sigma^0 K^0_S K^+ decays reconstructed in 232 fb1^{-1} of data collected with the BaBar detector at the PEP-II asymmetric-energy e+ee^+e^- storage ring. The Λc+\Lambda_c^+ mass is measured to be 2286.46±0.14MeV/c22286.46\pm0.14\mathrm{MeV}/c^2. The dominant systematic uncertainties arise from the amount of material in the tracking volume and from the magnetic field strength.Comment: 14 pages, 8 postscript figures, submitted to Phys. Rev.

    Observation of the Decay B=> J/psi eta K and Search for X(3872)=> J/psi eta

    Full text link
    We report the observation of the BB meson decay B±J/ψηK±B^\pm\to J/\psi \eta K^\pm and evidence for the decay B0J/ψηKS0B^0\to J/\psi \eta K^0_S, using {90} million BBbarBBbar events collected at the \ensuremath{\Upsilon{(4S)}}\xspace resonance with the BaBarBaBar detector at the PEP-II e+ee^+ e^- asymmetric-energy storage ring. We obtain branching fractions of B\cal{B}(B±J/ψηK±(B^\pm\to J/\psi \eta K^{\pm})=(10.8±2.3(stat.)±2.4(syst.))×105(10.8\pm 2.3(\rm{stat.})\pm 2.4(\rm{syst.}))\times 10^{-5} and B\cal{B}(B0J/ψηKS0(B^0\to J/\psi\eta K_{\rm{S}}^{0})=(8.4±2.6(stat.)±2.7(syst.))×105(8.4\pm 2.6(\rm{stat.})\pm 2.7(\rm{syst.}))\times 10^{-5}. We search for the new narrow mass state, the X(3872), recently reported by the Belle Collaboration, in the decay B^\pm\to X(3872)K^\pm, X(3872)\to \jpsi \eta and determine an upper limit of B\cal{B}(B^\pm \to X(3872) K^\pm \to \jpsi \eta K^\pm) <7.7×106<7.7\times 10^{-6} at 90% C.L.Comment: 7 pages and two figures, submitted to Phys. Rev. Lett

    Measurement of the Ratio of b Quark Production Cross Sections in Antiproton-Proton Collisions at 630 GeV and 1800 GeV

    Full text link
    We report a measurement of the ratio of the bottom quark production cross section in antiproton-proton collisions at 630 GeV to 1800 GeV using bottom quarks with transverse momenta greater than 10.75 GeV identified through their semileptonic decays and long lifetimes. The measured ratio sigma(630)/sigma(1800) = 0.171 +/- .024 +/- .012 is in good agreement with next-to-leading order (NLO) quantum chromodynamics (QCD)

    Search for the radiative decays B ->rho gamma and B-0 ->omega gamma

    Get PDF
    A search of the exclusive radiative decays B-->rho(770)gamma and B-0-->omega(782)gamma is performed on a sample of about 84x10(6) B (B) over bar events collected by the BABAR detector at the SLAC PEP-II asymmetric-energy e(+)e(-) storage ring. No significant signal is seen in any of the channels. We set upper limits on the branching fractions B of B(B-0-->rho(0)gamma)rho(+)gamma)omegagamma)rhogamma)=Gamma(B+-->rho(+)gamma)=2xGamma(B-0-->rho(0)gamma), we find the combined limit B(B-->rhogamma)rhogamma)/B(B-->K(*)gamma)<0.047 at 90% C.L
    corecore