149 research outputs found
A statistical downscaling framework for environmental mapping
In recent years, knowledge extraction from data has become increasingly popular, with many numerical forecasting models, mainly falling into two major categories—chemical transport models (CTMs) and conventional statistical methods. However, due to data and model variability, data-driven knowledge extraction from high-dimensional, multifaceted data in such applications require generalisations of global to regional or local conditions. Typically, generalisation is achieved via mapping global conditions to local ecosystems and human habitats which amounts to tracking and monitoring environmental dynamics in various geographical areas and their regional and global implications on human livelihood. Statistical downscaling techniques have been widely used to extract high-resolution information from regional-scale variables produced by CTMs in climate model. Conventional applications of these methods are predominantly dimensional reduction in nature, designed to reduce spatial dimension of gridded model outputs without loss of essential spatial information. Their downside is twofold—complete dependence on unlabelled design matrix and reliance on underlying distributional assumptions. We propose a novel statistical downscaling framework for dealing with data and model variability. Its power derives from training and testing multiple models on multiple samples, narrowing down global environmental phenomena to regional discordance through dimensional reduction and visualisation. Hourly ground-level ozone observations were obtained from various environmental stations maintained by the US Environmental Protection Agency, covering the summer period (June–August 2005). Regional patterns of ozone are related to local observations via repeated runs and performance assessment of multiple versions of empirical orthogonal functions or principal components and principal fitted components via an algorithm with fully adaptable parameters. We demonstrate how the algorithm can be extended to weather-dependent and other applications with inherent data randomness and model variability via its built-in interdisciplinary computational power that connects data sources with end-users
DNA damage induced by cis- and carboplatin as indicator for in vitro sensitivity of ovarian carcinoma cells
<p>Abstract</p> <p>Background</p> <p>The DNA damage by platinum cytostatics is thought to be the main cause of their cytotoxicity. Therefore the measurement of the DNA damage induced by cis- and carboplatin should reflect the sensitivity of cancer cells toward the platinum chemotherapeutics.</p> <p>Methods</p> <p>DNA damage induced by cis- and carboplatin in primary cells of ovarian carcinomas was determined by the alkaline comet assay. In parallel, the reduction of cell viability was measured by the fluorescein diacetate (FDA) hydrolysis assay.</p> <p>Results</p> <p>While in the comet assay the isolated cells showed a high degree of DNA damage after a 24 h treatment, cell viability revealed no cytotoxicity after that incubation time. The individual sensitivities to DNA damage of 12 tumour biopsies differed up to a factor of about 3. DNA damage after a one day treatment with cis- or carboplatin correlated well with the cytotoxic effects after a 7 day treatment (r = 0,942 for cisplatin r = 0.971 for carboplatin). In contrast to the platinum compounds the correlation of DNA damage and cytotoxicity induced by adriamycin was low (r = 0,692), or did not exist for gemcitabine.</p> <p>Conclusion</p> <p>The measurement of DNA damage induced by cis- and carboplatin is an accurate method to determine the in vitro chemosensitivity of ovarian cancer cells towards these cytostatics, because of its quickness, sensitivity, and low cell number needed.</p
coreNASH: Multi-stakeholder Consensus on Core Outcomes for Decision Making About Nonalcoholic Steatohepatitis Treatment
The increasing prevalence and burden of nonalcoholic steatohepatitis (NASH) has spurred the development of new treatments and a need to consider outcomes used for NASH treatment decision making. Development of a NASH core outcome set (COS) can help prioritize outcomes of highest importance by incorporating the perspectives from a variety of decision makers. coreNASH was an initiative to develop a COS for NASH using a modified Delphi consensus process with a multi-stakeholder voting panel. A candidate outcome list was created based on a literature review and key informant interviews. The candidate outcome list was then condensed and prioritized through three rounds of online voting and through discussion at an in-person meeting. Outcomes were retained or eliminated based on predetermined consensus criteria, which included special weighting of patients’ opinions in the first two voting rounds. The coreNASH Delphi panel included 53 participants (7 patients, 10 clinicians and researchers, 7 health technology assessors, 22 industry representatives, 2 regulators, and 5 payers) who considered outcomes for two NASH-related COS: one for NASH without cirrhosis (F2-F3) and one for NASH with cirrhosis (F4). The initial candidate outcome list for both disease stages included 86 outcomes. The panel agreed on including two core outcomes for NASH without cirrhosis and nine core outcomes for NASH with cirrhosis in the COS. Conclusion: A consensus-based COS has been developed that can be used across the life cycle of NASH treatments. Outcomes included can contribute to decision making for regulatory, market access, and on-market decision making. Including the coreNASH COS in clinical development programs will facilitate improved comparisons and help decision makers assess the value of new products
Principles of sensorimotor learning.
The exploits of Martina Navratilova and Roger Federer represent the pinnacle of motor learning. However, when considering the range and complexity of the processes that are involved in motor learning, even the mere mortals among us exhibit abilities that are impressive. We exercise these abilities when taking up new activities - whether it is snowboarding or ballroom dancing - but also engage in substantial motor learning on a daily basis as we adapt to changes in our environment, manipulate new objects and refine existing skills. Here we review recent research in human motor learning with an emphasis on the computational mechanisms that are involved
The reference frame for encoding and retention of motion depends on stimulus set size
YesThe goal of this study was to investigate the reference
frames used in perceptual encoding and storage of visual
motion information. In our experiments, observers viewed
multiple moving objects and reported the direction of motion
of a randomly selected item. Using a vector-decomposition
technique, we computed performance during smooth pursuit
with respect to a spatiotopic (nonretinotopic) and to a
retinotopic component and compared them with performance
during fixation, which served as the baseline. For the stimulus
encoding stage, which precedes memory, we found that the
reference frame depends on the stimulus set size. For a single
moving target, the spatiotopic reference frame had the most
significant contribution with some additional contribution
from the retinotopic reference frame. When the number of
items increased (Set Sizes 3 to 7), the spatiotopic reference
frame was able to account for the performance. Finally, when
the number of items became larger than 7, the distinction
between reference frames vanished. We interpret this finding
as a switch to a more abstract nonmetric encoding of motion
direction. We found that the retinotopic reference frame was
not used in memory. Taken together with other studies, our
results suggest that, whereas a retinotopic reference frame
may be employed for controlling eye movements, perception
and memory use primarily nonretinotopic reference frames.
Furthermore, the use of nonretinotopic reference frames appears
to be capacity limited. In the case of complex stimuli, the
visual system may use perceptual grouping in order to simplify
the complexity of stimuli or resort to a nonmetric abstract
coding of motion information
High Bandwidth Synaptic Communication and Frequency Tracking in Human Neocortex
Neuronal firing, synaptic transmission, and its plasticity form the building blocks for processing and storage of information in the brain. It is unknown whether adult human synapses are more efficient in transferring information between neurons than rodent synapses. To test this, we recorded from connected pairs of pyramidal neurons in acute brain slices of adult human and mouse temporal cortex and probed the dynamical properties of use-dependent plasticity. We found that human synaptic connections were purely depressing and that they recovered three to four times more swiftly from depression than synapses in rodent neocortex. Thereby, during realistic spike trains, the temporal resolution of synaptic information exchange in human synapses substantially surpasses that in mice. Using information theory, we calculate that information transfer between human pyramidal neurons exceeds that of mouse pyramidal neurons by four to nine times, well into the beta and gamma frequency range. In addition, we found that human principal cells tracked fine temporal features, conveyed in received synaptic inputs, at a wider bandwidth than for rodents. Action potential firing probability was reliably phase-locked to input transients up to 1,000 cycles/s because of a steep onset of action potentials in human pyramidal neurons during spike trains, unlike in rodent neurons. Our data show that, in contrast to the widely held views of limited information transfer in rodent depressing synapses, fast recovering synapses of human neurons can actually transfer substantial amounts of information during spike trains. In addition, human pyramidal neurons are equipped to encode high synaptic information content. Thus, adult human cortical microcircuits relay information at a wider bandwidth than rodent microcircuits
The Identification of Zebrafish Mutants Showing Alterations in Senescence-Associated Biomarkers
There is an interesting overlap of function in a wide range of organisms between genes that modulate the stress responses and those that regulate aging phenotypes and, in some cases, lifespan. We have therefore screened mutagenized zebrafish embryos for the altered expression of a stress biomarker, senescence-associated β-galactosidase (SA-β-gal) in our current study. We validated the use of embryonic SA-β-gal production as a screening tool by analyzing a collection of retrovirus-insertional mutants. From a pool of 306 such mutants, we identified 11 candidates that showed higher embryonic SA-β-gal activity, two of which were selected for further study. One of these mutants is null for a homologue of Drosophila spinster, a gene known to regulate lifespan in flies, whereas the other harbors a mutation in a homologue of the human telomeric repeat binding factor 2 (terf2) gene, which plays roles in telomere protection and telomere-length regulation. Although the homozygous spinster and terf2 mutants are embryonic lethal, heterozygous adult fish are viable and show an accelerated appearance of aging symptoms including lipofuscin accumulation, which is another biomarker, and shorter lifespan. We next used the same SA-β-gal assay to screen chemically mutagenized zebrafish, each of which was heterozygous for lesions in multiple genes, under the sensitizing conditions of oxidative stress. We obtained eight additional mutants from this screen that, when bred to homozygosity, showed enhanced SA-β-gal activity even in the absence of stress, and further displayed embryonic neural and muscular degenerative phenotypes. Adult fish that are heterozygous for these mutations also showed the premature expression of aging biomarkers and the accelerated onset of aging phenotypes. Our current strategy of mutant screening for a senescence-associated biomarker in zebrafish embryos may thus prove to be a useful new tool for the genetic dissection of vertebrate stress response and senescence mechanisms
Computerized clinical decision support systems for drug prescribing and management: A decision-maker-researcher partnership systematic review
<p>Abstract</p> <p>Background</p> <p>Computerized clinical decision support systems (CCDSSs) for drug therapy management are designed to promote safe and effective medication use. Evidence documenting the effectiveness of CCDSSs for improving drug therapy is necessary for informed adoption decisions. The objective of this review was to systematically review randomized controlled trials assessing the effects of CCDSSs for drug therapy management on process of care and patient outcomes. We also sought to identify system and study characteristics that predicted benefit.</p> <p>Methods</p> <p>We conducted a decision-maker-researcher partnership systematic review. We updated our earlier reviews (1998, 2005) by searching MEDLINE, EMBASE, EBM Reviews, Inspec, and other databases, and consulting reference lists through January 2010. Authors of 82% of included studies confirmed or supplemented extracted data. We included only randomized controlled trials that evaluated the effect on process of care or patient outcomes of a CCDSS for drug therapy management compared to care provided without a CCDSS. A study was considered to have a positive effect (<it>i.e.</it>, CCDSS showed improvement) if at least 50% of the relevant study outcomes were statistically significantly positive.</p> <p>Results</p> <p>Sixty-five studies met our inclusion criteria, including 41 new studies since our previous review. Methodological quality was generally high and unchanged with time. CCDSSs improved process of care performance in 37 of the 59 studies assessing this type of outcome (64%, 57% of all studies). Twenty-nine trials assessed patient outcomes, of which six trials (21%, 9% of all trials) reported improvements.</p> <p>Conclusions</p> <p>CCDSSs inconsistently improved process of care measures and seldomly improved patient outcomes. Lack of clear patient benefit and lack of data on harms and costs preclude a recommendation to adopt CCDSSs for drug therapy management.</p
Visual attention and action: How cueing, direct mapping, and social interactions drive orienting
Despite considerable interest in both action perception and social attention over the last 2 decades, there has been surprisingly little investigation concerning how the manual actions of other humans orient visual attention. The present review draws together studies that have measured the orienting of attention, following observation of another’s goal-directed action. Our review proposes that, in line with the literature on eye gaze, action is a particularly strong orienting cue for the visual system. However, we additionally suggest that action may orient visual attention using mechanisms, which gaze direction does not (i.e., neural direct mapping and corepresentation). Finally, we review the implications of these gaze-independent mechanisms for the study of attention to action. We suggest that our understanding of attention to action may benefit from being studied in the context of joint action paradigms, where the role of higher level action goals and social factors can be investigated
- …