137 research outputs found

    Electrically Tunable Multiwavelength Bragg Grating Filter Acoustically Induced in a Highly Birefringent Suspended Core Fiber

    Get PDF
    Multiwavelength reflection spectra induced by an acoustically modulated fiber Bragg grating (FBG) in a highly birefringent suspended core fiber are experimentally investigated. Longitudinal acoustic waves interacting with a grating generate side lobes in the reflectivity spectrum and produce a superposed reflection band. The reflectivity of up to five wavelength peaks can be actively tuned by the voltage of the electrical signal inducing the acoustic waves. This indicates new possibilities for compact and fast multiwavelength dynamic and fiber-integrated reflection filters

    Multi-wavelength reflection spectra from an acousto-optic modulated fiber Bragg grating in a highly birefringent suspended core fiber

    Get PDF
    The interaction of a fiber Bragg grating and longitudinal acoustic waves in a highly birefringent suspended-core fiber is investigated for the realization of a multi-wavelength reflection property. The modulated grating couples power from the fast and slow polarization modes to shifted superposed modes supported by the grating. The grating reflectivity of the superposed modes are tuned by the voltage of an electrical signal. Up to five different wavelength reflection peaks have been generated indicating new possibilities for compact and fast fiber-integrated multi-wavelength dynamic filters

    Reflectivity and Bandwidth Modulation of Fiber Bragg Gratings in a Suspended Core Fiber by Tunable Acoustic Waves

    Get PDF
    The acousto-optic modulation of fiber Bragg gratings in a four-hole suspended core fiber is experimentally demonstrated. Strong modulations with a reflectivity amplitude decrease by up to 67% and a 57% bandwidth increase in the Bragg resonance are obtained for gratings of 0.26- and 1-nm 3-dB bandwidths, respectively. The reduction of the required acoustic power for achieving the acousto-optic modulation compared to conventional solid-core single-mode fibers points to more efficient modulator devices in suspended core fibers

    Nanofiber-based high-Q microresonator for cryogenic applications

    Get PDF
    We demonstrate a cryo-compatible, fully fiber-integrated, alignment-free optical microresonator. The compatibility with low temperatures expands its possible applications to the wide field of solid-state quantum optics, where a cryogenic environment is often a requirement. At a temperature of 4.6 K we obtain a quality factor of (9.9±0.7)×106\mathbf{(9.9 \pm 0.7) \times 10^6}. In conjunction with the small mode volume provided by the nanofiber, this cavity can be either used in the coherent dynamics or the fast cavity regime, where it can provide a Purcell factor of up to 15. Our resonator is therefore suitable for significantly enhancing the coupling between light and a large variety of different quantum emitters and due to its proven performance over a wide temperature range, also lends itself for the implementation of quantum hybrid systems.Comment: 9 pages, 3 figure

    All-fiber laser mode-locked by the acousto-optic modulation of a fiber Bragg grating in suspended core fiber

    Get PDF
    An ytterbium-doped fiber laser mode-locked by the interaction of a fiber Bragg grating and longitudinal acoustic waves in a suspended core fiber is experimentally investigated. An optimized design of an acousto-optic modulator is also proposed. The results indicate output pulses with a width of less than 550 ps at a repetition rate of 10 MHz. The reduction of the power consumed by the transducer and the grating length points out to more efficient, compact and fast acousto-optic modulators for mode-locked all-fiber lasers

    Nanofiber Fabry-Perot microresonator for non-linear optics and cavity quantum electrodynamics

    Full text link
    We experimentally realize a Fabry-Perot-type optical microresonator near the cesium D2 line wavelength based on a tapered optical fiber, equipped with two fiber Bragg gratings which enclose a sub-wavelength diameter waist. Owing to the very low taper losses, the finesse of the resonator reaches F = 86 while the on-resonance transmission is T = 11 %. The characteristics of our resonator fulfill the requirements of non-linear optics and cavity quantum electrodynamics in the strong coupling regime. In combination with its demonstrated ease of use and its advantageous mode geometry, it thus opens a realm of applications.Comment: 4 pages, 3 figure

    Bending insensitivity of fiber Bragg gratings in suspended-core optical fibers

    Get PDF
    This Letter presents simulation and experimental results that explore bending insensitivity of fiber Bragg gratings in suspended-core optical fibers. The implementation of thin silica bridge in the fibers enhances index contrast of the fiber core and reduces bending-induced strain transfer to the fiber core. This fiber design lead to a reduction of over 7 times in strain-induced fiber Bragg grating resonant peak shifts in the suspended-core fiber compared with that in standard telecommunication fiber, and an 0:14dB bending loss at a bending radius of 6:35mm. © 2011 Optical Society of America

    Suspended-core fiber Bragg grating sensor for directional- dependenttransverse stress monitoring

    Get PDF
    This Letter presents simulation and experimental results of orientation-dependent transverse stress fiber sensors using fiber Bragg gratings (FBGs) inscribed in four-hole suspended-core fibers. Resonant peak shifts and splitting of FBGs were studied as functions of the applied transverse load and fiber orientation. Both simulation and experimental results revealed that the response of FBGs in suspended-core fibers is sensitive to both the orientation and magnitude of an applied transverse stress. © 2011 Optical Society of America
    corecore