67 research outputs found

    Electrical conductive double-walled carbon nanotubes � Silica glass nanocomposites prepared by the sol�gel process and spark plasma sintering

    Get PDF
    The electrical conductivity of suspensions in liquid of several kinds of carbon nanotubes (CNTs) is measured. Raw and soft-functionalized double-walled carbon nanotubes (DWCNTs) appear to be the most promising for achieving a low electrical percolation threshold. A 0.35 vol.% DWCNTs�SiO2 nanocomposite is prepared by the sol�gel process and densified by spark plasma sintering. The obtained material presents a fairly good dispersion of DWCNTs and its electrical conductivity (104 S cm1) is six orders of magnitude higher than that previously reported for 1 vol.% multi-walled CNTs�SiO2

    Correlation between resistance fluctuations and temperature dependence of conductivity in graphene

    Full text link
    The weak temperature dependence of the resistance R(T) of monolayer graphene1-3 indicates an extraordinarily high intrinsic mobility of the charge carriers. Important complications are the presence of mobile scattering centres that strongly modify charge transport, and the presence of strong mesoscopic conductance fluctuations that, in graphene, persist to relatively high temperatures4,5. In this Letter, we investigate the surprisingly varied changes in resistance that we find in graphene flakes as temperature is lowered below 70 K. We propose that these changes in R(T) arise from the temperature dependence of the scattered electron wave interference that causes the resistance fluctuations. Using the field effect transistor configuration, we verify this explanation in detail from measurements of R(T) by tuning to different gate voltages corresponding to particular features of the resistance fluctuations. We propose simple expressions that model R(T) at both low and high charge carrier densities

    Transparent, flexible electrodes and sensors based on carbon nanotube thin films

    Get PDF
    Hem obtingut capes primes de Nanotubs de Carboni d'una sola paret (CNT) sobre un substrat amb un mètode molt simple, que poden ser emprades com elèctrodes flexibles i transparents en dispositius electrònics. Per tal d'obtenir dispositius reproduïbles amb propietats similars, en particular amb similar impedància Z(ω), és important relacionar les propietats elèctriques amb la quantitat de CNTs presents en la capa. Per això, hem realitzat capes primes de CNTs sobre substrats flexibles i transparents (PPC, policarbonat de propilè) amb diferents densitats de CNT. A partir d'un mètode iteratiu matemàtic i de l'Anàlisi Tèrmogravimètric (TGA) de cada mostra, hem pogut determinar la quantitat de CNTs presents en cada mostra. També n'hem fet una estimació a partir de l'espectroscòpia d'absorció òptica. Hem vist que els dos mètodes donen resultats coherents. Hem analitzat les diferents mostres mesurant la impedància elèctrica a diferents frequències, fins 110 MHz. Les capes primes amb poca densitat de CNTs són semiconductores, en canvi les denses són metàl·liques, i prou conductores per ser utilitzades com elèctrode de treball en un procés electroquímic. Podem obtenir així composites CNT-polímer conductor o CNT-metall, electroquímicament. Amb l'objectiu de les aplicacions per a sensors, utilitzant les capes primes de CNT com elèctrode de treball hem obtingut composites CNT-polímer conductor, depositant-hi electroquímicament un polímer conductor, polipirrol o polianilina. Hem analitzat les propietats del dispositiu com a sensor electroquímic, observant la seva resposta en funció del pH, mesurant el potencial en circuit obert en funció del pH de la solució, entre 1 i 13. Els resultats mostren una bona sensibilitat, linearitat i estabilitat. Per això, els dispositius CNT/polipirrol i CNT/polianilina poden tenir aplicacions com a sensors o biosensors en estat sòlid, depositats sobre qualsevol superfície de forma arbitrària, que pot ser transparent i flexible.We obtained thin films of single-walled carbon nanotubes (CNTs), which may be used as transparent, flexible electrodes in electronic devices, on a substrate using a very simple method. In order to construct reproducible devices with similar properties, in particular with similar impedance Z(ω), it is important to associate the electrical properties with the number of CNTs in a network. We prepared thin CNT networks on transparent, flexible substrates (PPC, polypropylene carbonate) with different CNT densities. The number of CNTs was estimated using a mathematical method based on the data obtained from thermo-gravimetric analysis (TGA). We were able to estimate the relative number of CNTs using optical absorption spectroscopy. These two methods are in good agreement. We also analysed the various samples using electrical impedance measurements at frequencies of up to 110 MHz. Low-density networks are semiconductors, whilst high-density networks behave like metals and are sufficiently good conductors to be used as working electrodes in electrochemical processes. It is thus possible to obtain CNT polymer and metal composite conductors electrochemically. With sensor applications in mind, we used CNT thin films as a working electrode to obtain a composite CNT-conducting polymer. This was performed by electrochemically depositing a conducting polymer ? polypyrrole or polyaniline ? on the electrode. The pH dependence of the device was measured by recording its open circuit potential in various buffer solutions. This enabled us to analyse the properties of the device as an electrochemical sensor. The results showed a good sensitivity, linearity and stability in both cases. Thus, the CNT/polypyrrole and CNT/polyaniline devices could have applications as solidstate gas sensors or biosensors when they are deposited on transparent and flexible surfaces of any shape

    Flexible, transparent electrodes using carbon nanotubes

    Get PDF
    We prepare thin single-walled carbon nanotube networks on a transparent and flexible substrate with different densities, using a very simple spray method. We measure the electric impedance at different frequencies Z(f) in the frequency range of 40 Hz to 20 GHz using two different methods: a two-probe method in the range up to 110 MHz and a coaxial (Corbino) method in the range of 10 MHz to 20 GHz. We measure the optical absorption and electrical conductivity in order to optimize the conditions for obtaining optimum performance films with both high electrical conductivity and transparency. We observe a square resistance of 1 to 8.5 k[greek capital letter omega] for samples showing 65% to 85% optical transmittance, respectively. For some applications, we need flexibility and not transparency: for this purpose, we deposit a thick film of single-walled carbon nanotubes on a flexible silicone substrate by spray method from an aqueous suspension of carbon nanotubes in a surfactant (sodium dodecyl sulphate), thereby obtaining a flexible conducting electrode showing an electrical resistance as low as 200 [greek capital letter omega]/sq. When stretching up to 10% and 20%, the electrical resistance increases slightly, recovering the initial value for small elongations up to 10%. We analyze the stretched and unstretched samples by Raman spectroscopy and observe that the breathing mode on the Raman spectra is highly sensitive to stretching. The high-energy Raman modes do not change, which indicates that no defects are introduced when stretching. Using this method, flexible conducting films that may be transparent are obtained just by employing a very simple spray method and can be deposited on any type or shape of surface.Postprint (published version

    Growth and properties of few-layer graphene prepared by chemical vapor deposition

    Full text link
    The structure, and electrical, mechanical and optical properties of few-layer graphene (FLG) synthesized by chemical vapor deposition (CVD) on a Ni coated substrate were studied. Atomic resolution transmission electron microscope (TEM) images show highly crystalline single layer parts of the sample changing to multilayer domains where crystal boundaries are connected by chemical bonds. This suggests two different growth mechanisms. CVD and carbon segregation participate in the growth process and are responsible for the different structural formations found. Measurements of the electrical and mechanical properties on the centimeter scale provide evidence of a large scale structural continuity: 1) in the temperature dependence of the electrical conductivity, a non-zero value near 0 K indicates the metallic character of electronic transport; 2) the Young's modulus of a pristine polycarbonate film (1.37 GPa) improves significantly when covered with FLG (1.85 GPa). The latter indicates an extraordinary Young modulus value of the FLG-coating of TPa orders of magnitude. Raman and optical spectroscopy support the previous conclusions. The sample can be used as a flexible and transparent electrode and is suitable for special membranes to detect and study individual molecules in high resolution TEM
    corecore