507 research outputs found

    Definition of Terms, Style, and Conventions Used in A.S.P.E.N. Guidelines and Standards

    Full text link
    Peer Reviewedhttps://deepblue.lib.umich.edu/bitstream/2027.42/141145/1/ncp0281.pd

    Public responses to precautionary information from the department of health (UK) about possible health risks from mobile phones

    Get PDF
    Understanding public perceptions of health information is of increasing importance in the light of the growing imperatives upon regulators to communicate information about risk and uncertainty. Communicating the possible health risks from mobile telecommunications is a domain that allows consideration of both public perceptions of uncertain public health information and public responses to precautionary advice. This research reports the results of a nationally representative survey in the UK (n = 1742) that explored public responses to a leaflet issued by the Department of Health (DoH) in 2000 providing information about the possible health risks of mobile phones. The aims of the study were twofold: a) to assess awareness of the leaflet and the extent to which participants could identify the precautionary advice that the leaflet contained as coming from the Government; and b) to examine publics’ responses to the current Government precautionary advice about mobile phone health risks; was this associated with increased concern or reassurance? The results indicate the importance of policy makers developing a clear understanding of the possible effects of communicating precautionary advice.Mobile Telecommunications and Health Research Programm

    The Role of Oxygen in Stimulating Methane Production in Wetlands

    Get PDF
    Methane (CH4), a potent greenhouse gas, is the second most important greenhouse gas contributor to climate change after carbon dioxide (CO2). The biological emissions of CH4 from wetlands are a major uncertainty in CH4 budgets. Microbial methanogenesis by Archaea is an anaerobic process accounting for most biological CH4 production in nature, yet recent observations indicate that large emissions can originate from oxygenated or frequently oxygenated wetland soil layers. To determine how oxygen (O2) can stimulate CH4 emissions, we used incubations of Sphagnum peat to demonstrate that the temporary exposure of peat to O2 can increase CH4 yields up to 2000-fold during subsequent anoxic conditions relative to peat without O2 exposure. Geochemical (including ion cyclotron resonance mass spectrometry, X-ray absorbance spectroscopy) and microbiome (16S rDNA amplicons, metagenomics) analyses of peat showed that higher CH4 yields of redox-oscillated peat were due to functional shifts in the peat microbiome arising during redox oscillation that enhanced peat carbon (C) degradation. Novosphingobium species with O2-dependent aromatic oxygenase genes increased greatly in relative abundance during the oxygenation period in redox-oscillated peat compared to anoxic controls. Acidobacteria species were particularly important for anaerobic processing of peat C, including in the production of methanogenic substrates H2 and CO2. Higher CO2 production during the anoxic phase of redox-oscillated peat stimulated hydrogenotrophic CH4 production by Methanobacterium species. The persistence of reduced iron (Fe(II)) during prolonged oxygenation in redox-oscillated peat may further enhance C degradation through abiotic mechanisms (e.g., Fenton reactions). The results indicate that specific functional shifts in the peat microbiome underlie O2 enhancement of CH4 production in acidic, Sphagnum-rich wetland soils. They also imply that understanding microbial dynamics spanning temporal and spatial redox transitions in peatlands is critical for constraining CH4 budgets; predicting feedbacks between climate change, hydrologic variability, and wetland CH4 emissions; and guiding wetland C management strategies

    Bridging the age gap: a review of molecularly informed treatments for glioma in adolescents and young adults

    Get PDF
    Gliomas are the most common primary central nervous system (CNS) tumors and a major cause of cancer-related mortality in children (age 39 years). Molecular pathology has helped enhance the characterization of these tumors, revealing a heterogeneous and ever more complex group of malignancies. Recent molecular analyses have led to an increased appreciation of common genomic alterations prevalent across all ages. The 2021 World Health Organization (WHO) CNS tumor classification, 5th edition (WHO CNS5) brings forward a nomenclature distinguishing "pediatric-type" and "adult-type" gliomas. The spectrum of gliomas in AYA comprises both "pediatric-like" and "adult-like" tumor entities but remains ill-defined. With fragmentation of clinical management between pediatric and adult centers, AYAs face challenges related to gaps in medical care, lower rates of enrollment in clinical trials and additional psychosocial and economic challenges. This calls for a rethinking of diagnostic and therapeutic approaches, to improve access to appropriate testing and potentially beneficial treatments to patients of all ages

    A Resource of Quantitative Functional Annotation for Homo sapiens Genes

    Get PDF
    The body of human genomic and proteomic evidence continues to grow at ever-increasing rates, while annotation efforts struggle to keep pace. A surprisingly small fraction of human genes have clear, documented associations with specific functions, and new functions continue to be found for characterized genes. Here we assembled an integrated collection of diverse genomic and proteomic data for 21,341 human genes and make quantitative associations of each to 4333 Gene Ontology terms. We combined guilt-by-profiling and guilt-by-association approaches to exploit features unique to the data types. Performance was evaluated by cross-validation, prospective validation, and by manual evaluation with the biological literature. Functional-linkage networks were also constructed, and their utility was demonstrated by identifying candidate genes related to a glioma FLN using a seed network from genome-wide association studies. Our annotations are presented—alongside existing validated annotations—in a publicly accessible and searchable web interface

    Combining guilt-by-association and guilt-by-profiling to predict Saccharomyces cerevisiae gene function

    Get PDF
    BackgroundLearning the function of genes is a major goal of computational genomics. Methods for inferring gene function have typically fallen into two categories: 'guilt-by-profiling', which exploits correlation between function and other gene characteristics; and 'guilt-by-association', which transfers function from one gene to another via biological relationships.ResultsWe have developed a strategy ('Funckenstein') that performs guilt-by-profiling and guilt-by-association and combines the results. Using a benchmark set of functional categories and input data for protein-coding genes in Saccharomyces cerevisiae, Funckenstein was compared with a previous combined strategy. Subsequently, we applied Funckenstein to 2,455 Gene Ontology terms. In the process, we developed 2,455 guilt-by-profiling classifiers based on 8,848 gene characteristics and 12 functional linkage graphs based on 23 biological relationships.ConclusionFunckenstein outperforms a previous combined strategy using a common benchmark dataset. The combination of 'guilt-by-profiling' and 'guilt-by-association' gave significant improvement over the component classifiers, showing the greatest synergy for the most specific functions. Performance was evaluated by cross-validation and by literature examination of the top-scoring novel predictions. These quantitative predictions should help prioritize experimental study of yeast gene functions
    corecore