677 research outputs found

    Simultaneous Measurements of Dinitrogen Fixation and Denitrification Associated With Coral Reef Substrates : Advantages and Limitations of a Combined Acetylene Assay

    Get PDF
    Nitrogen (N) cycling in coral reefs is of key importance for these oligotrophic ecosystems, but knowledge about its pathways is limited. While dinitrogen (N-2) fixation is comparably well studied, the counteracting denitrification pathway is under-investigated, mainly because of expensive and relatively complex experimental techniques currently available. Here, we combined two established acetylene-based assays to one single setup to determine N-2-fixation and denitrification performed by microbes associated with coral reef substrates/organisms simultaneously. Accumulating target gases (ethylene for N-2-fixation, nitrous oxide for denitrification) were measured in gaseous headspace samples via gas chromatography. We measured N-2-fixation and denitrification rates of two Red Sea coral reef substrates (filamentous turf algae, coral rubble), and demonstrated, for the first time, the co-occurrence of both N-cycling processes in both substrates. N-2-fixation rates were up to eight times higher during the light compared to the dark, whereas denitrification rates during dark incubations were stimulated for turf algae and suppressed for coral rubble compared to light incubations. Our results highlight the importance of both substrates in fixing N, but their role in relieving N is potentially divergent. Absolute N-2-fixation rates of the present study correspond with rates reported previously, even though likely underestimated due to an initial lag phase. Denitrification is also presumably underestimated due to incomplete nitrous oxide inhibition and/or substrate limitation. Besides these inherent limitations, we show that a relative comparison of N-2-fixation and denitrification activity between functional groups is possible. Thus, our approach facilitates cost-efficient sample processing in studies interested in comparing relative rates of N-2-fixation and denitrification.Peer reviewe

    Nitrogen fixation and denitrification activity differ between coral- and algae-dominated Red Sea reefs

    Get PDF
    Coral reefs experience phase shifts from coral- to algae-dominated benthic communities, which could affect the interplay between processes introducing and removing bioavailable nitrogen. However, the magnitude of such processes, i.e., dinitrogen (N-2) fixation and denitrification levels, and their responses to phase shifts remain unknown in coral reefs. We assessed both processes for the dominant species of six benthic categories (hard corals, soft corals, turf algae, coral rubble, biogenic rock, and reef sands) accounting for>98% of the benthic cover of a central Red Sea coral reef. Rates were extrapolated to the relative benthic cover of the studied organisms in co-occurring coral- and algae-dominated areas of the same reef. In general, benthic categories with high N-2 fixation exhibited low denitrification activity. Extrapolated to the respective reef area, turf algae and coral rubble accounted for>90% of overall N-2 fixation, whereas corals contributed to more than half of reef denitrification. Total N-2 fixation was twice as high in algae- compared to coral-dominated areas, whereas denitrification levels were similar. We conclude that algae-dominated reefs promote new nitrogen input through enhanced N-2 fixation and comparatively low denitrification. The subsequent increased nitrogen availability could support net productivity, resulting in a positive feedback loop that increases the competitive advantage of algae over corals in reefs that experienced a phase shift.Peer reviewe

    High rates of carbon and dinitrogen fixation suggest a critical role of benthic pioneer communities in the energy and nutrient dynamics of coral reefs

    Get PDF
    Following coral mortality in tropical reefs, pioneer communities dominated by filamentous and crustose algae efficiently colonize substrates previously occupied by coral tissue. This phenomenon is particularly common after mass coral mortality following prolonged bleaching events associated with marine heatwaves. Pioneer communities play an important role for the biological succession and reorganization of reefs after disturbance. However, their significance for critical ecosystem functions previously mediated by corals, such as the efficient cycling of carbon (C) and nitrogen (N) within the reef, remains uncertain. We used 96 carbonate tiles to simulate the occurrence of bare substrates after disturbance in a coral reef of the central Red Sea. We measured rates of C and dinitrogen (N-2) fixation of pioneer communities on these tiles monthly over an entire year. Coupled with elemental and stable isotope analyses, these measurements provide insights into macronutrient acquisition, export and the influence of seasonality. Pioneer communities exhibited high rates of C and N(2)fixation within 4-8 weeks after the introduction of experimental bare substrates. Ranging from 13 to 25 mu mol C cm(-2) day(-1)and 8 to 54 nmol N cm(-2) day(-1), respectively, C and N(2)fixation rates were comparable to reported values for established Red Sea coral reefs. This similarity indicates that pioneer communities may quickly compensate for the loss of benthic productivity by corals. Notably, between 40% and 85% of fixed organic C was exported into the environment, constituting a vital source of energy for the coral reef food web. Our findings suggest that benthic pioneer communities may play a crucial, yet overlooked role in the C and N dynamics of oligotrophic coral reefs by contributing to the input of new C and N after coral mortality. While not substituting other critical ecosystem functions provided by corals (e.g. structural habitat complexity and coastal protection), pioneer communities likely contribute to maintaining coral reef nutrient cycling through the accumulation of biomass and import of macronutrients following coral loss. A freePlain Language Summarycan be found within the Supporting Information of this article.Peer reviewe

    Integrated assessment—how does it help unpack water access by marginalized farmers?

    Get PDF
    © 2020 by the authors. Licensee MDPI, Basel, Switzerland. Water is critical to the lives and livelihoods of rural communities in developing countries; however, access to water can be inequitable within communities. This paper uses a generalized integrated assessment approach to explore the determinants of water access by marginalized farmers in two villages in coastal Bangladesh, before and after the setup of local water institutions. The study was part of a broader project aimed at promoting socially inclusive agricultural intensification. An integrative framework was developed in this study to capture and link the diverse range of factors that influence the distribution of water, including the often-overlooked role of social dynamics and governance arrangements. While interventions around improving water resource infrastructure can be critical for freshwater availability, the case studies show that a breakdown of asymmetric power structures may also be needed for water access to all individuals, especially marginalized groups. Establishing a community-based water institution on its own does not necessarily address power issues in a community. It is imperative that the agency and capacities of the marginalized members are developed and that the institutional arrangements foster an enabling environment for marginalized members to influence decision making. Integrated assessment allowed the case studies to be explored from multiple perspectives so as to gain a greater understanding of the barriers and levers to obtaining equitable outcomes from water interventions

    Nitrogen eutrophication particularly promotes turf algae in coral reefs of the central Red Sea

    Get PDF
    While various sources increasingly release nutrients to the Red Sea, knowledge about their effects on benthic coral reef communities is scarce. Here, we provide the first comparative assessment of the response of all major benthic groups (hard and soft corals, turf algae and reef sands-together accounting for 80% of the benthic reef community) to in-situ eutrophication in a central Red Sea coral reef. For 8 weeks, dissolved inorganic nitrogen (DIN) concentrations were experimentally increased 3-fold above environmental background concentrations around natural benthic reef communities using a slow release fertilizer with 15% total nitrogen (N) content. We investigated which major functional groups took up the available N, and how this changed organic carbon (C-org) and N contents using elemental and stable isotope measurements. Findings revealed that hard corals (in their tissue), soft corals and turf algae incorporated fertilizer N as indicated by significant increases in delta N-15 by 8%, 27% and 28%, respectively. Among the investigated groups, C-org content significantly increased in sediments (+24%) and in turf algae (+33%). Altogether, this suggests that among the benthic organisms only turf algae were limited by N availability and thus benefited most from N addition. Thereby, based on higher C-org content, turf algae potentially gained competitive advantage over, for example, hard corals. Local management should, thus, particularly address DIN eutrophication by coastal development and consider the role of turf algae as potential bioindicator for eutrophication.Peer reviewe

    High summer temperatures amplify functional differences between coral- and algae-dominated reef communities

    Get PDF
    Shifts from coral to algal dominance are expected to increase in tropical coral reefs as a result of anthropogenic disturbances. The consequences for key ecosystem functions such as primary productivity, calcification, and nutrient recycling are poorly understood, particularly under changing environmental conditions. We used a novel in situ incubation approach to compare functions of coral- and algae-dominated communities in the central Red Sea bimonthly over an entire year. In situ gross and net community primary productivity, calcification, dissolved organic carbon fluxes, dissolved inorganic nitrogen fluxes, and their respective activation energies were quantified to describe the effects of seasonal changes. Overall, coral-dominated communities exhibited 30% lower net productivity and 10 times higher calcification than algae-dominated communities. Estimated activation energies indicated a higher thermal sensitivity of coral-dominated communities. In these communities, net productivity and calcification were negatively correlated with temperature (>40% and >65% reduction, respectively, with +5 degrees C increase from winter to summer), whereas carbon losses via respiration and dissolved organic carbon release more than doubled at higher temperatures. In contrast, algae-dominated communities doubled net productivity in summer, while calcification and dissolved organic carbon fluxes were unaffected. These results suggest pronounced changes in community functioning associated with coral-algal phase shifts. Algae-dominated communities may outcompete coral-dominated communities because of their higher productivity and carbon retention to support fast biomass accumulation while compromising the formation of important reef framework structures. Higher temperatures likely amplify these functional differences, indicating a high vulnerability of ecosystem functions of coral-dominated communities to temperatures even below coral bleaching thresholds. Our results suggest that ocean warming may not only cause but also amplify coral-algal phase shifts in coral reefs.Peer reviewe

    Nutrient pollution enhances productivity and framework dissolution in algae- but not in coral-dominated reef communities

    Get PDF
    Ecosystem services provided by coral reefs may be susceptible to the combined effects of benthic species shifts and anthropogenic nutrient pollution, but related field studies are scarce. We thus investigated in situ how dissolved inorganic nutrient enrichment, maintained for two months, affected community-wide biogeochemical functions of intact coral- and degraded algae-dominated reef patches in the central Red Sea. Results from benthic chamber incubations revealed 87% increased gross productivity and a shift from net calcification to dissolution in algae-dominated communities after nutrient enrichment, but the same processes were unaffected by nutrients in neighboring coral communities. Both community types changed from net dissolved organic nitrogen sinks to sources, but the increase in net release was 56% higher in algae-dominated communities. Nutrient pollution may, thus, amplify the effects of community shifts on key ecosystem services of coral reefs, possibly leading to a loss of structurally complex habitats with carbonate dissolution and altered nutrient recycling.Peer reviewe

    Reflecting on integrated assessment in the Socially Inclusive Agricultural Intensification (SIAGI) project

    Get PDF
    Agricultural aide interventions are often intended to help small and marginal farmer households increase their agricultural production, and by doing so, better meet their household needs and improve their social and economic standing. However, intensifying their agricultural production requires them to have the capital assets (financial, human, natural, physical and social) and agency to access and use more agricultural inputs, develop and manage the necessary farm or community level infrastructure (e.g. for irrigation, or post-harvesting), and make informed crop and land management choices. Many small and marginalised farmers are lacking in both capital and agency, which constrains their capacity to engage in, and benefit from, agricultural intensification. In this paper, we reflect on our integration research in the 'Promoting Socially Inclusive and sustainable Agricultural Intensification in West Bengal and Bangladesh' (SIAGI) project, focusing on the learnings and outcomes of being socially inclusive in our modelling practices. The Ethical Community Engagement (ECE) ethos and practice to which the SIAGI project team has committed has shaped the content of the integrated assessment frameworks that we have developed as well as the process (Figure 1) we used to develop them. Social inclusion is both a core value of the SIAGI project and an outcome against which the impact of the project will be measured

    Integrated assessment frameworks for understanding pathways for socially inclusive agricultural intensification

    Get PDF
    Alleviating poverty through agricultural development is a challenge that requires sound understanding of the social, market, environmental and institutional settings. An integrated assessment (IA) process can help to clarify and examine the nature of the interactions between these diverse processes and facilitate concerted and collaborative efforts from interdisciplinary teams. This paper provides an overview of IA frameworks developed for a project aimed at identifying opportunities and policy options that promote more socially inclusive and sustainable agricultural intensification in rural communities in West Bengal and Bangladesh. The IA frameworks were intended to provide a 'big picture' of the social and agricultural systems we are researching, and to improve understanding of the interrelationships between the diverse processes, and the pathways between drivers and outcomes. This paper describes the methodological process followed in developing these frameworks (Figure 1). The frameworks are grounded in both theory and observations from project activities, and were iteratively developed with input from stakeholders and domain experts. The frameworks then formed the basis for further (semi)quantitative or qualitative analysis, demonstrated in the study through the development of semi-quantitative models (fuzzy cognitive maps) and narratives.This project (LWR/2014/072) is funded by the Australian Centre for International Agricultural Research (ACIAR). The authors acknowledge contributions from all members of the SIAGI project team

    Excited-state transition-rate measurements in C-18

    Get PDF
    Excited states in C-18 were populated by the one-proton knockout reaction of an intermediate energy radioactive N-19 beam. The lifetime of the first 2(+) state was measured with the Koln/NSCL plunger via the recoil distance method to be tau (2(1)(+)) = 22.4 +/- 0.9(stat)(-2.2)(+3.3)(syst) ps, which corresponds to a reduced quadrupole transition strength of B(E2; 2(1)(+) -> 0(1)(+)) = 3.64(-0.14)(+ 0.15)(stat)(-0.47)(+0.40)(syst) e(2)fm(4). In addition, an upper limit on the lifetime of a higher-lying state feeding the 2(1)(+) state was measured to be tau < 4.6 ps. The results are compared to large-scale ab initio no-core shell model calculations using two accurate nucleon-nucleon interactions and the importance-truncation scheme. The comparison provides strong evidence that the inclusion of three-body forces is needed to describe the low-lying excited-state properties of this A = 18 system
    • …
    corecore