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Nitrogen (N) cycling in coral reefs is of key importance for these oligotrophic
ecosystems, but knowledge about its pathways is limited. While dinitrogen (N2)
fixation is comparably well studied, the counteracting denitrification pathway is
under-investigated, mainly because of expensive and relatively complex experimental
techniques currently available. Here, we combined two established acetylene-based
assays to one single setup to determine N2-fixation and denitrification performed by
microbes associated with coral reef substrates/organisms simultaneously. Accumulating
target gases (ethylene for N2-fixation, nitrous oxide for denitrification) were measured
in gaseous headspace samples via gas chromatography. We measured N2-fixation
and denitrification rates of two Red Sea coral reef substrates (filamentous turf algae,
coral rubble), and demonstrated, for the first time, the co-occurrence of both N-cycling
processes in both substrates. N2-fixation rates were up to eight times higher during
the light compared to the dark, whereas denitrification rates during dark incubations
were stimulated for turf algae and suppressed for coral rubble compared to light
incubations. Our results highlight the importance of both substrates in fixing N, but
their role in relieving N is potentially divergent. Absolute N2-fixation rates of the present
study correspond with rates reported previously, even though likely underestimated
due to an initial lag phase. Denitrification is also presumably underestimated due to
incomplete nitrous oxide inhibition and/or substrate limitation. Besides these inherent
limitations, we show that a relative comparison of N2-fixation and denitrification activity
between functional groups is possible. Thus, our approach facilitates cost-efficient
sample processing in studies interested in comparing relative rates of N2-fixation
and denitrification.
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INTRODUCTION

Nitrogen (N) is one of the primary nutrients critical for the
survival of all living organisms. Natural N availability is limited in
many ecosystems, while others suffer from eutrophication. Thus,
understanding N cycling processes is of paramount interest.
Two antagonistic biological processes within the N cycle are of
particular importance: (a) the import of new N into the ecosystem
via microbes (diazotrophs) capable of converting atmospheric
dinitrogen (N2) into bioavailable forms of N, which is called
biological N2-fixation (hereafter N2-fix), and (b) its counteracting
process that removes N from the ecosystem via a reduction of
nitrate to N2, commonly described as denitrification (hereafter
DENI; Vitousek et al., 1997; Gruber and Sarmiento, 2002; Jickells
and Weston, 2011). Both processes appear in terrestrial and
aquatic ecosystems, where N can act as an important factor
limiting productivity (Lesser et al., 2007).

In coral reefs, N cycling is of particular importance as these
ecosystems flourish in the oligotrophic waters of the tropics.
However, attempts to describe microbial N cycling in coral
reef environments are primarily restricted to N2-fix to provide
information about how coral reefs flourish in nutrient-poor
waters and how their N demand is satisfied (Neil and Capone,
2008). Appropriate methods to quantify other pathways are
largely missing to date (Groffman et al., 2006).

N2-fix is often quantified by one of two commonly applied
methods: labeled isotope tracing techniques (Montoya et al.,
1996; Grover et al., 2014) or acetylene reduction assays (ARA;
Pogoreutz et al., 2017; Tilstra et al., 2017). Isotope based
techniques can be highly specific in identifying the exact location
of N2-fix, but they are comparatively expensive and require
higher effort to set up, perform and analyze samples. Whereas
isotope tracer approaches track the fate of fixed N to the cellular
compartments of a target organism/substrate (Wilson et al.,
2012), acetylene assays measure gross N2-fix activities on a
“holobiont-wide” level of an organisms/substrate (Mulholland
et al., 2004; Mohr et al., 2010; Grover et al., 2014). This property is
of significance, as coral reef organisms/substrates are considered
as holobionts, consisting of the host organism/substrate and all
of its associated symbiotic microorganisms (Rosenberg et al.,
2007). The ARA is frequently used due to its comparatively easy
handling and cost-effectiveness and has received first attention
in the 1960s (Hardy et al., 1968). It makes use of the fact that
acetylene acts as an alternative substrate to N2, resulting in the
preferential reduction of acetylene to ethylene (C2H4) instead of
N2 to ammonium by the nitrogenase enzyme (Supplementary
Figure S1). The C2H4 evolution is then quantified, e.g., via gas
chromatography (GC), as an indirect measurement of N2-fix.

DENI can be detected using the same methods as described
above (Koop et al., 2001; Groffman et al., 2006; Hoffmann
et al., 2009; Myrstener et al., 2016). Acetylene assays are
carried out as acetylene inhibits the nitrous oxide (N2O)
reductase of denitrifying bacteria, which subsequently results in
an accumulation of N2O (Supplementary Figure S1; Fedorova
et al., 1973; Balderston et al., 1976; Yoshinari and Knowles, 1976).
Accumulated N2O can then be quantified via GC and used as an
approximation of DENI activity.

DENI received attention as a mechanism to relieve coral
reefs from excessive N only recently, as coral reefs experience
and suffer more frequently from anthropogenically N inputs
(Halpern et al., 2008; Smith and Schindler, 2009); upcoming
studies should, thus, focus on determining the capacities of
coral reef environments to cope both with limited and excessive
N by quantifying N2-fix and DENI activities simultaneously
(Rädecker et al., 2015).

In this context, acetylene assays have the potential for
detecting both N2-fix and DENI simultaneously. Indeed, both
methods have been applied in terrestrial (Yoshinari et al., 1977)
and aquatic (Bertics et al., 2012) systems. Capone and Montoya
(2001) already hypothesized a potential simultaneous usage in
coral reef environments, but applications on various coral reef
organisms and substrates are still missing to date. Comparing
multiple functional groups of coral reefs, however, is of key
importance, as coral reefs experience regime-shifts that in return
alter N cycling patterns that potentially exacerbate or alleviate
anthropogenic impacts.

We acknowledge the ongoing scientific debate whether
isotope-based approaches or acetylene assays are the methods of
choice in order to investigate N cycling pathways. We, therefore,
do not compare or discuss both approaches in the present study.
Instead, we highlight the application of a combined acetylene-
based assay to two common coral reef substrates. We were able to
evaluate both process measurements in one single experimental
setup and analysis, which we termed COBRA (= combined
blockage/reduction acetylene assay). Based on the results of the
application, we discuss advantages and limitations as well as its
potential use in coral reef science.

MATERIALS AND PROCEDURES

A complete list of all materials and the equipment used in this
protocol as well as a full description of how the acetylene assay
was performed can be found in Supplementary Material.

Collection and Maintenance
Specimens were collected randomly from a semi-exposed area of
Abu Shosha reef in the Jeddah region (22◦18′15′′ N, 39◦02′56′′E)
on the west coast of Saudi Arabia in the central Red Sea in
March 2018. Turf algae (n = 5) and coral rubble fragments
(n = 4) were selected in order to cover prevailing benthic
substrates of the region. Turf algae were defined as dense and
flat (<2 cm in height) assemblages of filamentous algae of
different species, including small individuals of macroalgae and
cyanobacteria. Coral rubble was defined as dislodged parts of
framework builders or loose reef rock larger than the sand
fraction with its associated microbial community according
to Rasser and Riegl (2002). All fragments were ˜10 cm long
and were collected with hammer and chisel from 5 to 6 m
water depth. They were immediately transferred to recirculation
aquaria on the boat (each filled with 10 L of ambient seawater)
and kept until experiments at ambient water temperature and
light conditions.
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Dinitrogen Fixation and Denitrification
Measurements
Incubations were conducted ex situ and directly after sample
collection (<3 h after collection). N2-fix and DENI incubations
were conducted using COBRA according to the steps outlined
in detail in Supplementary Material S1. Briefly, all COBRA
incubations were conducted in gas-tight 1 L glass chambers,
each filled with 800 mL of nutrient-enriched seawater (5 µM
NO3

−; NO3
− enrichment consisted of previously prepared

NaNO3 stock solution, prepared with MilliQ water and NaNO3,
≥99.0%, Sigma-Aldrich) and 200 mL headspace (Figure 1). Both
incubation water and headspace were 10% acetylene enriched, as
a 10% saturation has been successfully applied in acetylene-based
assays for the quantification of N2-fix (Mulholland et al., 2004;
Pogoreutz et al., 2017) and DENI (Yoshinari and Knowles, 1976;
Shrewsbury et al., 2016) previously. Nutrient enriched seawater
was used, as acetylene inhibits the production of NO3

− in
the nitrification pathway (Hynes and Knowles, 1978; Oremland
and Capone, 1988). Thus, added NO3

− served as a substrate
for DENI (see section “Limitations” for detailed information).
Replicates were arranged in individual incubation chambers, and
an additional chamber that was filled exclusively with 5 µM
NO3

− enriched seawater as “seawater blank” (Figure 1). Solely
one seawater blank was chosen because negligible microbial
activity (diazotrophs and hypothetically denitrifyers) in seawater
communities was expected according to previous studies (Foster
et al., 2009; Bednarz et al., 2015; Cardini et al., 2016). All
incubation chambers were placed in a tempered water bath and

stirred continuously (500 rpm) to ensure stable measurement
conditions for 12 h at in situ temperatures (25◦C). Dark and
light incubations were conducted separately; dark incubations
were performed at night in complete darkness. Light incubations
were performed with a photon flux of ∼200 µM quanta m−2

s−1. Gaseous samples were taken immediately after starting the
incubations (t0), after 2 h (t2), 4 h (t4), 8 h (t8), and 12 h (t12) and
analyzed using GC (Agilent 7890A, HP-Plot/Q column, helium
pulsed discharge detector) via manual injection. N2-fix and DENI
were quantified by changes in gas concentrations according to
equations 2–6 outlined in Supplementary Material S1. Besides
start and end concentrations, two different intervals were selected
as basis for the rate calculations, particularly t4–t12 for N2-
fix and t0–t4 for DENI activity. Finally, concentrations were
corrected for the seawater blank signal, related to incubation
volume and normalized to the surface area of the substrates
(Supplementary Tables S2, S3). Surface areas for turf algae and
coral rubble fragments were calculated using cloud-based 3D
models of samples (Autodesk Remake v19.1.1.2; Lavy et al., 2015;
Gutierrez-Heredia et al., 2016).

Calibration
A concentration series of C2H4 (Abdullah Hashim Industrial
Gases & Equipment Co. Ltd. Specialty Gases Center, 19.6 ppm
in balanced air; 210 ppm in balanced air) and N2O (Air
Liquide, 199.6 ppm in balanced Helium) was prepared by diluting
commercial standards to desired standard concentrations.
Standards covered the expected ranges of 0–210 ppm for C2H4

FIGURE 1 | Experimental design and general setup of the CORBA (= Combined Reduction/Blockage Acetylene assay) to simultaneously measure dinitrogen (N2)
fixation and denitrification in environmental samples. The two target gases ethylene and nitrous oxide accumulate (framed C2H4 and N2O, resp.) as provided
acetylene (C2H2) is (a) preferentially reduced to C2H4 instead of N2 to ammonium (NH4), and (b) inhibiting the evolution of in the N2 gas at the N2O-stage. Gaseous
samples can be analyzed using gas chromatography.
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and 0–2 ppm for N2O, respectively, and were injected manually
into the GC. For the C2H4 calibration curve, standards with
known concentrations of 210, 105, 52.5, 21, 20, 10, 5, 2, 1,
and 0 ppm were measured in duplicates. The same was done
for the N2O calibration curve, where standards with known
concentrations of 2, 1, 0.5, 0.2 ppm, and 0 ppm were injected.

Statistical Analysis
The statistical analysis was performed using Sigmaplot 12 (Systat
software, v12.0). A two-way analysis of variance (ANOVA) with
factors “substrates” and “sampling time” was performed. In case
of p < 0.05, a post hoc test (Tukey HSD) was performed to check
for significant differences between substrates and sampling times.
Significance level was set at α = 0.05.

RESULTS

Limits of detection (LOD), obtained from duplicate
measurements of prepared standard samples, were 0.3 ppm for
both target gases (Supplementary Figure S2). Standard curves
showed high linearity for both target gases (linear regressions; R2

> 0.99; p < 0.0001, F > 800; Supplementary Figure S2).
Concentrations for both C2H4 and N2O in seawater blank

incubations over the incubation time of 12 h were stable
(Supplementary Figure S3). Production of C2H4 (as a proxy
for N2-fix) and N2O (as a proxy for DENI) were measured
in both dark and light conditions (Figure 2, Supplementary
Tables S2, S3). Statistical analysis identified “time” as a significant
factor in both processes and regardless of light availability
(Supplementary Table S4). C2H4 evolution was measured in
both substrates and was higher in light compared to dark
incubations. Overall, C2H4 increased over time, with an initial
lag phase in the first 4 h of incubation. Consequently, N2-fix rates
calculated discounting the initial lag phase were one third higher
than rates resulting from start-end concentrations (Table 1).

N2O evolution was detected for turf algae and coral rubble,
with turf algae showing significantly higher amounts of N2O after
2, 8, and 12 h incubation time regardless of light availability
(Supplementary Table S5). For both substrates, the highest
amounts of N2O were measured after 4 h of incubation. Unlike
to C2H4 evolution, no initial lag phase was observed. In contrast,
N2O only increased in the first 4 h and remained stable or
decreased afterward. Turf algae DENI rates were higher in dark
than those for coral rubble, but similar when incubated in light
(Table 1). DENI rates obtained from the first 4 h of incubation
were up to 8 times higher than those resulting from start-end
concentrations (Table 1).

DISCUSSION

Dinitrogen Fixation and Denitrification
Measurements
In the present study, we were able to demonstrate the co-
occurrence of N2-fix and DENI in turf algae and coral rubble
for the first time. The simultaneous presence of these antinomic

processes has been detected in coral reef associated sediments
(Koop et al., 2001) and microbial mats (Joye and Paerl, 1993)
before. Potentially, both pathways can be carried out by the
same microbes (Bothe et al., 1981) and are indirectly linked by
their similar environmental requirements (Tilstra et al., 2019).
Absolute N2-fix rates (i.e., calculated based on sampling points
t0 and t12) measured in the present study were in the same range
for turf algae (Rix et al., 2015) and coral rubble (Cardini et al.,
2016), who also obtained N2-fix rates via acetylene-based assays
(Table 2). Potentially, the similarity of rates of both substrates
was due to a similar associated microbial composition on the
substrates in terms of ecological niche and thus N2-fix activity. To
the best of our knowledge, this was the first study to quantify rates
of DENI in coral rubble and turf algae, and, thus, no comparison
to previous reports is possible.

Interestingly, both substrates showed stimulated N2-fix during
light compared to dark incubations. DENI activity was similar
in both substrates during light incubations, whereas dark
incubations showed suppressed DENI activity in coral rubble
but stimulated DENI in turf algae (Table 1). Nitrogenase,
the key enzyme performing N2-fix, is extremely sensitive to
oxygen (Robson and Postgate, 1980), and N2-fix is generally
considered as an anaerobic process (Compaoré and Stal, 2010).
Likewise, DENI is also an anaerobic process (Zumft, 1997). Both
incubations (dark and light) were started with freshly collected
seawater containing natural, ambient oxygen concentrations,
which likely increased during light and decreased during dark
incubations due to photosynthesis or respiration (Mague et al.,
1974; Rix et al., 2015; Cardini et al., 2016). The occurrence
of both anaerobic processes despite the presence of oxygen
(i.e., during light) indicates that both N2-fix and DENI may be
spatially separated from oxygen evolution in both substrates,
or that the involved diazotrophs and denitrifiers are capable of
performing N2-fix and DENI, resp., in the presence of oxygen
(Lloyd et al., 1987; Berman-Frank et al., 2001; Silvennoinen et al.,
2008; Bednarz et al., 2018). Furthermore, aerobic conditions
promote nitrification (Rysgaard et al., 1994), i.e., the oxidation
from ammonium to nitrite and NO3

−, which serves as a substrate
for DENI (Devol, 2008). However, in how far photosynthesis
and respiration affected N2-fix and DENI activities in both
substrates in the present study remains speculative. Synoptically,
the method aids to reveal interesting N cycling patterns. This
emphasizes the general applicability of the combined technique
for the quantification of N2-fix rates, yet revealing interesting
patterns for both N cycling pathways.

Our findings revealed increasing C2H4 concentrations over
the total incubation time of 12 h with an initial lag phase in
the first 4 h, which is shorter than reported before (Patriquin
and McClung, 1978; Williams et al., 1987; Shieh and Lin, 1992).
Considering start (t0) and end (t12) concentrations will thus
result in an underestimation of N2-fix rates (Table 1). However,
N2-fix rates based on start/end concentrations are comparable
to previous studies that have applied standard acetylene
reduction assays (Table 2), indicating that COBRA still provides
sufficient information to go beyond relative comparisons between
functional groups but also allowing comparative analysis with
other studies. Nevertheless, the most accurate rates are derived
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FIGURE 2 | Ethylene (C2H4) production as a proxy for N2-fixation (A,C) and nitrous oxide (N2O) production as a proxy for denitrification (B,D) in turf algae (n = 5)
and coral rubble (n = 4) in dark (top graphs) and light (bottom graphs) incubation over time. Asterisks indicate significant differences (p < 0.05) between both
substrates. Note: Different scales for C2H4 concentrations.

by omitting the initial lag phase when calculating rates and
considering sampling points t4 and t12 instead.

In the case of N2O rates, we revealed higher N2O rates
obtained from the first 4 h incubation time (Table 1). This
leads to the suggestion of a short sampling interval to identify
DENI potentials (i.e., t0 and t4). The detected maximum
after 4 h likely reflects an incomplete blockage of the DENI
pathway (Yu et al., 2010). A depletion of accumulated N2O gas
concentrations via denitrifying bacteria is likely due to reduced
DENI inactivity as NO3

− substrate has been consumed (see next
section). However, our findings reveal a significant difference
in accumulated N2O after 12 h between turf algae and coral
rubble fragments, despite a decrease in N2O concentrations
after 4 h. As a result, we recommend short sampling intervals
but also conclude that even over 12 h incubation time, a

relative comparison between different functional groups may be
possible as long as methodological limitations (e.g., substrate
availability) are considered.

Altogether, we recommend performing incubations for 12 h,
with sampling points at t0, t4, and t12. If feasible with regard
to costs and workload, we suggest a higher temporal resolution
(i.e., more sampling points) to achieve rates that are potentially
more precise. By all means, the temporal resolution chosen in
the present study enables calculations for most reliable N2-fix
(from t4 until t12) rates and DENI (from t0 until t4) potentials. In
case that solely start- and end-measurements can be performed
(from t0 until t12), we conclude that a) the rates measured with
the COBRA still allow comparisons with other studies in case of
N2-fix (Table 2); and b) COBRA provides sufficient information
about the relative importance by accounting for relative changes

Frontiers in Marine Science | www.frontiersin.org 5 June 2020 | Volume 7 | Article 411

https://www.frontiersin.org/journals/marine-science
https://www.frontiersin.org/
https://www.frontiersin.org/journals/marine-science#articles


fmars-07-00411 June 9, 2020 Time: 21:16 # 6

El-Khaled et al. Nitrogen Cycling in Coral Reef Substrates

TABLE 1 | N2-fixation (nmol N2 cm−2 h−1) and denitrification (nmol N2O
cm−2 h−1) rates/potentials in turf algae and coral rubble.

N2-fixation
[t0–t12]

N2-fixation
[t4–t12]

Denitrification
[t0–t12]

Denitrification
[t0–t4]

Turf algae 0.12 ± 0.03 0.16 ± 0.05 0.05 ± 0.01 0.19 ± 0.06

Coral rubble 0.18 ± 0.02 0.24 ± 0.03 0.01 ± 0.00 0.01 ± 0.00

Turf algae 1.00 ± 0.17 1.27 ± 0.22 0.02 ± 0.00 0.08 ± 0.00

Coral rubble 0.80 ± 0.18 1.07 ± 0.24 0.01 ± 0.00 0.08 ± 0.02

Rates are obtained from varying sampling times (in squared brackets) to highlight
underestimations when solely start/end values are used to generate N2-fixation
and denitrification rates. Dark incubation rates are highlighted in gray color, light
incubation rates are highlighted in white color. All N2-fixation rates were converted
with a conservative conversion factor of 4:1 (C2H4:N2), according to Mulholland
et al. (2004). Values are presented in mean ± SE.

TABLE 2 | N2-fixation (nmol N2 cm−2 h−1) and denitrification (nmol N2O
cm−2 h−1) rates of turf algae and coral rubble in comparison with values reported
from other coral reef areas worldwide acquired via acetylene assays.

N2-fixation Denitrification Location References

Turf algae

0.56 ± 0.10 0.04 ± 0.01 Central Red Sea Present study

0.44 ± 0.04* n.d.a. Northern Red Sea Rix et al., 2015

Coral rubble

0.49 ± 0.10 0.01 ± 0.00 Central Red Sea Present study

1.00 ± 0.25 n.d.a. GBR Davey et al., 2008

0.58 ± 0.20* n.d.a. Northern Red Sea Cardini et al., 2016

0.90–4.00 n.d.a. GBR Larkum, 1988

0.74–5.70 n.d.a. GBR Larkum et al., 1988

*Winter season. Rates of the presented study were obtained from mean values
from t0 and t12 sampling times of both dark and light incubations to demonstrate
comparability though being ultimately underestimated. All N2-fixation rates were
converted with a conservative conversion factor of 4:1 (C2H4:N2), according to
Mulholland et al. (2004). Values are presented in mean ± SE. GBR, Great Barrier
Reef, Australia. n.d.a., no data available.

in rates across substrates in case of DENI activity, even though
both N cycling pathways may be underestimated.

Limitations
Acetylene assays have faced criticism in the last decades.
Limitations of acetylene assays have been reviewed extensively
in Giller (1987), Groffman et al. (2006), and Wilson et al.
(2012). Reported restraints are of general nature and cannot be
directly related to a combination of both acetylene reduction
and inhibition as in the presented setup here. Thus, we focus
on methodological limitations that are important to consider
for the interpretation of relative rather than absolute rates
(Groffman et al., 2006).

Firstly, Oremland and Capone (1988) observed an unspecific
inhibitory effect of acetylene on other N cycling pathways, as
acetylene inhibits the formation of NO3

− via the nitrification
pathway. This can ultimately result in an underestimation of
DENI (Hynes and Knowles, 1978; Jenkins and Kemp, 1984;
Seitzinger, 1993; Groffman et al., 2006), as there is a close
coupling of both nitrification and DENI (i.e., the production
of NO3

− via nitrification serves as a substrate for DENI). This

is particularly the case in oligotrophic systems, where NO3
−

may be a limiting factor for DENI (Miyajima et al., 2001).
Hence, to preclude substrate limitation, incubations with NO−3
addition, as used in this study, can aid maintaining DENI
activity in the absence of nitrification (Haines et al., 1981; Joye
and Paerl, 1993; Miyajima et al., 2001). However, the results
obtained with COBRA and nutrient addition reflect, thus, a
DENI potential rather than actual DENI rates, as artificially
increased substrate availability drives DENI above natural
occurring rates. A potential side effect of added NO3

− on N2-
fix activity should be addressed in future studies. Theoretically,
with the addition of NO3

−, an energetically more cost-efficient
alternative N source (i.e., through assimilation) is provided,
as compared to N2-fix (Falkowski, 1983). The preferential
NO3

− assimilation potentially results in lower N2-fix rates.
Yet, there is both evidence for the inhibition of N2-fix by
the availability of NO3

− and counterproof that N2-fix occurs
with substantial rates in the presence of up to 30 µM NO3

−

(Knapp, 2012).
A time-dependent incomplete inhibition of N2O through the

presence of acetylene has been discussed before (Groffman et al.,
2006; Yu et al., 2010). An incomplete inhibition and a subsequent
N2O reduction in the presence of acetylene can, thus, result in an
incorrect estimation of total DENI. Yu et al. (2010) have reported
incomplete inhibitions after ≥ 24 h. Our results indicate that
observed patterns of decreasing N2O concentrations after > 4 h
incubation time potentially occur due to an incomplete blockage.
Possibly, substrate depletion during the incubation time also lead
to decreasing N2O concentrations after > 4 h of incubation
time, as NO3

− a) is potentially used as a substrate for DENI
(Devol, 2008) or) may be assimilated immediately by turf algae
(den Haan et al., 2016) and potentially also by coral rubble. It
remains unclear if saturating the incubation chamber with >10%
acetylene will result in a complete inhibition.

Advantages and Use in Research
Generally, acetylene assays are applied as indirect approaches to
identify N2-fix as well as DENI. Despite their limitations (see
above), they have provided N2-fix and DENI rate quantifications
and estimates for many aquatic systems.

We could demonstrate that a combination of both approaches
(i.e., acetylene reduction and acetylene blockage assay) can be
performed simultaneously. Both assays have been performed
separately over a wide range of aquatic substrates and organisms
before (Olson et al., 1998; Cardini et al., 2016). As no changes
in the basic setup have been carried out here, we hypothesize
that the here presented approach (similar to commonly applied
acetylene assays) can be used as a versatile method for organisms
and substrates of various aquatic environments.

By using COBRA, the number of samples and measuring
time is halved, as only one gaseous sample and consequently,
only one sample run is required to detect both target gases.
In addition, we were able to measure four gaseous headspace
samples per hour using either manual or autosampler injection
(see Supplementary Material), whereby the autosampler has
the capacity to measure 71 samples within < 18 h. Overall,
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the high sample throughput enables the generation of profound
datasets in a minimum of time, with the possibility to receive
a high temporal resolution with multiple functional groups
of a targeted coral environment. This opens the door to a
deeper understanding of temporal and spatial patterns of N2-
fix and DENI across various substrates and organisms and their
associated microbial community.

Previous acetylene-based investigations mostly used flame
ionization detectors for N2-fix quantification and either electron
capture or thermal conductivity detectors for DENI detection
(Haines et al., 1981; Capone et al., 1992; Joye and Paerl, 1993;
Capone and Montoya, 2001). The latter have a high sensitivity
for N2O but are also prone to interference from other compounds
(Capone and Montoya, 2001; Roberge et al., 2004). In the present
study, we used a helium pulsed discharge ionization detector.
This detector is up to 500 times more sensitive than the thermal
conductivity sensor and up to 50 times more sensitive than the
flame ionization detector (Woo et al., 1996; Hunter et al., 1998).
Owing to the use of only one single and very sensitive detector
(Roberge et al., 2004) only one type of carrier gas was required for
one sample run. This leads to a reduction in costs, time, storage,
and usage of further gases.

In the future, unprecedented dramatic environmental changes
will be a major challenge for life in the earths’ oceans
(Harnik et al., 2012). Thus, research will undoubtedly focus
on understanding and predicting the effects of climate change
and other anthropogenic pressures on marine ecosystems and
their organisms (Bijma et al., 2013; Pandolfi et al., 2011; Runge
et al., 2016). Special emphasis will be laid on the effects of
environmental change on marine microbial communities, which
act as the major drivers of elemental transformations of terrestrial
and marine biogeochemical cycles (Gruber and Galloway,
2008; Gruber, 2011). N cycling is one of the most important
biogeochemical cycles, and, as such, changes in N availability
(through eutrophication) will likely evoke physiological and
metabolic responses in coral reef organisms/substrates. Their
study is paramount for understanding N cycling from a
species to ecosystem level with knowledge of a changing
environment (Cardini et al., 2014). Eutrophication, as well as
ocean warming and acidification, belong to the mainly discussed
and assessed threats. These can easily be implemented in the
COBRA by adjusting incubation parameters, e.g., temperature,
nutrient availability and pH, or a combination of such. Hence,
the described N cycling pathways can be investigated in an

anthropogenically influenced system that simulates conditions
comparable to common anthropogenic stressor scenarios. As
investigations on the effects of climate change have become a
major scientific interest, the opportunities to include them in the
here presented technique underline its potential.
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