10 research outputs found

    Evidence for Prolonged Magmatism on Vetsa Inferred from Eucrite Zircon Grains

    No full text
    Published for the information of faculty and students at the University of Minnesota Duluth branch

    Trace element inventory of meteoritic Ca-phosphates.

    No full text
    Most extraterrestrial samples feature the two accessory Ca-phosphates (apatite-group minerals and merrillite), which are important carrier phases of the rare earth elements (REE). The trace-element concentrations (REE, Sc, Ti, V, Cr, Mn, Co, As, Rb, Sr, Y, Zr, Nb, Ba, Hf, Ta, Pb, Th, and U) of selected grains were analyzed by LA-ICP-MS and/or SIMS (REE only). This systematic investigation includes 99 apatite and 149 merrillite analyses from meteorites deriving from various asteroidal bodies including 1 carbonaceous chondrite, 8 ordinary chondrites, 3 acapulcoites, 1 winonaite, 2 eucrites, 5 shergottites, 1 ureilitic trachyandesite, 2 mesosiderites, and 1 silicate-bearing IAB iron meteorite.Although Ca-phosphates predominantly form in metamorphic and/or metasomatic reactions, some are of igneous origin. As late-stage phases that often incorporate the vast majority of their host’s bulk REE budget, the investigated Ca-phosphates have REE enrichments of up to two orders of magnitude compared to the host rock’s bulk concentrations. Within a single sample, each phosphate species displays a uniform REE-pattern, and variations are mainly restricted to their enrichment, therefore indicating similar formation conditions. Exceptions are brecciated samples, i.e., the Adzhi-Bogdo (LL3-6) ordinary chondrite. Despite this uniformity within single samples, distinct meteorite groups do not necessarily have unique REE-patterns. Four basic shapes dominate the REE patterns of meteoritic Ca-phosphates: (1) flat patterns, smoothly decreasing from La-Lu with prominent negative Eu anomalies (acapulcoites, eucrites, apatite from the winonaite and the ureilitic trachyandesite, merrillite from ordinary chondrites); (2) unfractionated patterns, with only minor or no anomalies (mesosiderites, enriched shergottites, IAB-iron meteorite); (3) LREE-enriched patterns, with either positive or slightly negative Eu anomalies (chondritic apatite); and (4) strongly LREE-depleted patterns, with negative Eu anomalies (depleted shergottites). The patterns do not correlate with the grade of metamorphism (petrologic type), specific adjacent mineral assemblages or with Ca-phosphate grain size. Neither the proportions of different REE, nor particular REE patterns themselves are universally correlated to a specific formation mechanism yet Eu (i.e., magnitude of the Eu anomaly) is a sensitive indicator to evaluate the timing of plagioclase and phosphate crystallization. Based on our data, U and Th abundances in apatite increase (almost linearly) with the grade of metamorphism, as well as with the differentiation of their host rock

    Chemical, microstructural and chronological record of phosphates in the Ksar Ghilane 002 enriched shergottite

    No full text
    The enriched basaltic (martian) shergottite Ksar Ghilane (KG) 002, discovered in 2010, is exceptionally rich in coexisting but discrete apatite and merrillite crystals. It has been selected to better constrain the formation conditions and post-crystallization processes, and thus the evolution of martian rocks based on Ca-phosphates. A petrological, chemical, chronological and microstructural approach using a series of high-spatial resolution techniques including Raman spectroscopy, electron microscopy (SEM, EPMA, CL-imaging) and secondary ion mass spectrometry (SIMS) analysis has been applied to a representative number of Ca-phosphate grains. Analytical results for apatite and merrillite reveal: (i) zoning in F, Cl, Br and I concentrations, (ii) elevated Cl concentrations in the range of ∼11,900–35,300 µg/g and halogen ratios, i.e., Cl/Br and Cl/I, as well as stable chlorine isotope composition, reported as δ37Cl values rel. to Standard Mean Ocean Chloride (SMOC, defined as 0‰) with a value of +0.67 ± 0.14‰ (1σ), distinguishing KG 002 phosphates from that of other enriched and depleted shergottites. The halogen and heavier δ37Cl record indicate a slightly higher degree of ∼3.5% assimilation of Cl-rich and isotopically heavier crustal reservoir on Mars when compared to other enriched shergottites. (iii) Structural investigations together with the chemical and petrological context of the grains confirm the occurrence of hydroxyl-poor merrillite, indicate weak if any alteration effects induced by metamictization, only minor structural modifications due to shock metamorphism, and absence of replacement reactions. Therefore, igneous crystallization of Ca-phosphates from a fractionated, hydrous and ferrous mantle source, rich in volatiles including the halogens and Na and lithophile rare earth-elements, and absence of interaction with crustal fluids/brines of the sample is deduced. (iv) The Pb isotopic composition of six apatite and three merrillite grains is highly unradiogenic and the 238U-206Pb record yields a phosphate crystallization time at 395 ± 240 Ma (2σ), which is similar to those of other enriched shergottites

    Pb evolution in the Martian mantle

    No full text
    The initial Pb compositions of one enriched shergottite, one intermediate shergottite, two depleted shergottites, and Nakhla have been measured by Secondary Ion Mass Spectrometry (SIMS). These values, in addition to data from previous studies using an identical analytical method performed on three enriched shergottites, ALH 84001, and Chassigny, are used to construct a unified and internally consistent model for the differentiation history of the Martian mantle and crystallization ages for Martian meteorites. The differentiation history of the shergottites and Nakhla/Chassigny are fundamentally different, which is in agreement with short-lived radiogenic isotope systematics. The initial Pb compositions of Nakhla/Chassigny are best explained by the late addition of a Pb-enriched component with a primitive, non-radiogenic composition. In contrast, the Pb isotopic compositions of the shergottite group indicate a relatively simple evolutionary history of the Martian mantle that can be modeled based on recent results from the Sm–Nd system. The shergottites have been linked to a single mantle differentiation event at 4504 Ma. Thus, the shergottite Pb isotopic model here reflects a two-stage history 1) pre-silicate differentiation (4504 Ma) and 2) post-silicate differentiation to the age of eruption (as determined by concordant radiogenic isochron ages). The μ-values (238U/204Pb) obtained for these two different stages of Pb growth are μ1 of 1.8 and a range of μ2 from 1.4–4.7, respectively. The μ1-value of 1.8 is in broad agreement with enstatite and ordinary chondrites and that proposed for proto Earth, suggesting this is the initial μ-value for inner Solar System bodies. When plotted against other source radiogenic isotopic variables (Sri, γ187Os, ε143Nd, and ε176Hf), the second stage mantle evolution range in observed mantle μ-values display excellent linear correlations (r2 > 0.85) and represent a spectrum of Martian mantle mixing-end members (depleted, intermediate, enriched)
    corecore