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A first step to understanding the initial conditions for habitability pathways 24 
in planetary systems is to determine when heavy meteorite bombardments waned 25 
and the earliest crust remained below the known thermal and shock pressure 26 
limits on microbiota survival (121°C, 78 GPa). We have determined this timing on 27 
Mars by documenting the metamorphic histories of its oldest known, 4.476 Ga to 28 
4.430 Ga, grains of the highly resilient minerals zircon and baddeleyite in the Rabt 29 
Sbayta polymict breccia meteorites; crustal fragments of the southern highlands. 30 
Here we show using electron and atom probe microscopy that the Mars grains 31 
(n=121) have all remained beneath 78 GPa conditions, with 97% exhibiting weak 32 
to no shock metamorphic features, or thermal overprints due to shock-induced 33 
melting and magmatism. This is opposite to bombarded crust on Earth and Moon 34 
wherein ~80% of grains show such features. The nearly pristine state of the Mars 35 
minerals thus establishes a lower age bracket of 4.48 Ga for the planet-scale 36 
impact that created the hemispheric dichotomy, and obviates any later 37 
cataclysmic bombardments. Considering existing thermal habitability models, 38 
portions of early Mars crust reached habitable conditions by at least 4.2 Ga, the 39 
onset of the martian ‘wet’ period, as much as ~500 million years earlier than the 40 
earliest record of life on Earth. An early giant impact period on Mars, broadly 41 
coeval with Moon formation, may have heralded early abiogenesis on both 42 
planets. 43 
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 The search for evidence of life on Mars continues to be a focus of planetary research, and 45 

recent work1 has heightened interest in the age range of crust that could have hosted life. 46 

Determining the earliest time window of martian habitability, however, requires measurement of 47 

the age at which the earliest crust transitioned permanently to a state in which both the intense 48 

shock pressures and heat (direct and indirect) caused by the early impact bombardment epoch 49 

subsided below viability thresholds for Earth-like deep biosphere2,3. Ultimately this transition 50 

depends on the timing and rate of delivery of impact energy to the inner solar system, a poorly 51 

constrained quantity ranging from exponential decline from the time of planet accretion at 4.56 52 

Ga and Moon formation at ~4.50 Ga4,5 to a later pulse at 4.0 Ga to 3.8 Ga due to proposed gas 53 

giant migration; the hotly debated late heavy bombardment (LHB)6. Thermal habitability 54 

windows for hypothermophiles range correspondingly; from transient episodes between 4.4 Ga 55 

and 4.1 Ga, to a much later window at 3.8 Ga3.  Shock pressure waves of tens of GPa created by 56 

bombardment can also frustrate life, however experiments reveal thresholds for survival as high 57 

as 78 GPa7 with resilience for pressure-adapted bacteria8. Here we present a test of which 58 

bombardment scenario applies to early Mars by reconstructing the maximum shock pressures 59 

and temperatures experienced on Mars by zircon and baddeleyite from the oldest known martian 60 

crust within the Rabt Sbayta Martian polymict breccia meteorites in combination with recent 61 

thermochronology9.  62 

Zirconium  minerals as metamorphic indicators 63 

 Zircon and baddeleyite are relatively common accessory minerals in planetary crusts and 64 

are known to faithfully record large length-scale (hundreds of kilometers) and large magnitude 65 

thermal and pressure perturbations that are otherwise erased in the rock record10. Micro-scale 66 

effects of heat (>400°C) include resorption of crystal facets, micro-zircon growth, and/or 67 
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epitaxial overgrowths of metamorphic zircon11 or, in the case of baddeleyite, rounding and 68 

truncation of igneous zoning and/or replacement by zircon12. At the nano-scale, atom probe 69 

tomography (APT) shows that high temperature (>800°C) metamorphism causes clustering of 70 

trace elements such as Pb, Al and Y13,14. Extreme heat (>900°C) resulting from shock waves >40 71 

GPa15 also produce diagnostic micro-features. In zircon these include curviplanar fractures, 72 

partly lined with impact melt, partial to total conversion to granular neoblasts10,16, or, in impact 73 

melt sheets and ejecta blankets, breakdown of zircon to ZrO2 and silica17.  74 

 The micro- and nano-scale indicators of shock pressure ≥40 GPa differ for zircon and 75 

baddeleyite. Zircon micro-scale features include lamellae or granules of the high-pressure 76 

polymorph reidite18. Baddeleyite is more sensitive to shock pressure than most rock-forming 77 

minerals, exhibiting microscopic, orthogonally-related reversion twins following shock above 5 78 

GPa19, and grains at pressures above >29 GPa are converted to defect-rich, nanocrystalline 79 

assemblages as seen in young martian meteorites20. At the nano-scale, shock metamorphism of 80 

baddeleyite combined with indirect heating to ~750°C by a kilometres-thick melt sheet caused 81 

nanoclustering of trace elements U, Fe, and Mn21, whereas zircon at >40 GPa and 900°C exhibits 82 

nanoclustering of Pb and Al (see below). These features can survive post-impact annealing 83 

effects that otherwise erase shock effects in rock-forming minerals (quartz, plagioclase)10 as well 84 

as fluvial and glacial surface transport following crater erosion22. We have compared this large 85 

suite of indicators of pressure ≥5 GPa and temperatures >400°C to the properties of individual 86 

zircon and baddeleyite grains from early Mars preserved in the meteorite North West Africa 87 

(NWA) 703423 and paired meteorites (collectively, the “Martian polymict breccia” meteorites). 88 

Meteoritic crustal fragments of early Mars 89 
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 The Martian polymict breccia meteorites are recognized as a rare sample of the martian 90 

regolith24, launched most likely from Mars’ southern highlands24–26, that consists of clasts of 91 

impact melt together with crystal and lithic fragments of Mars’ oldest crust24,27,28. The 92 

chronology and lithologic makeup of these paired stones have been studied by numerous groups, 93 

and some common elements in their evolution have become apparent. The breccia contains 94 

diverse clasts of crystalline igneous, sedimentary, and vitrophyric rocks24,26,29 that were 95 

assembled and welded29 during a high energy event that produced melt clasts and impact 96 

spherules with impactor component24. The age of this impact event was initially estimated at 97 

~1.4 Ga25,29, although recent thermochronology suggests a date as young as 0.2 Ga9. Launch to 98 

Earth occurred at least 5 million years ago9,30. The launch event exposed the meteoroid to shock 99 

pressures between 5 and 15 GPa, creating open fractures that presently cross-cut all components 100 

of the meteorites. These were infilled by carbonate during residence in the Rabt Sbayta region of  101 

the Saharan desert where the meteorites were recovered25,29,31. 102 

 The oldest lithic clasts are fine-grained noritic to monzonitic igneous rocks and a subset of 103 

fine-grained sedimentary rocks25,29. These clasts are the hosts of accessory zircon and 104 

baddeleyite, and we focus on these as they are the oldest known martian minerals and are 105 

capable of preserving the highest fidelity record of shock metamorphism. Two populations of 106 

crystalline zircon were recognized with ages of 4.476 ± 0.001 Ga and 4.430 ± 0.001 Ga, 107 

respectively28. Baddeleyite yielded U-Pb ages in the range of the younger population of 108 

zircon24,29. Raman spectroscopy (ν3(SiO4)) and photoluminescence (Dy3+) of crystalline zircon (n 109 

= 10) from NWA 7906 and NWA 7475 reveal zoning in crystallinity due to varying radiation 110 

damage (U concentration), but no evidence of zircon transformation to the high-pressure 111 

polymorph reidite32. Here we present a systematic assessment of the thermal and shock history of 112 
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a larger population of zircon and baddeleyite grains to compare with those from bombarded 113 

Earth and Moon crust.  114 

Shock metamorphic reconstructions  115 

 A total of nine polished surfaces from five paired stones (NWA 7034, 7475, 7906, 11220, 116 

and Rabt Sbayta 003 (Figs. S1,2,3) were scanned with an automated SEM-BSE-EDS method 117 

(see Methods). The population comprises 95 zircon and 52 baddeleyite grains (Table S1), with 118 

40% of zircon and 53% of baddeleyite occurring within igneous clasts. Radiation damage in a U-119 

rich subset of the zircon population [n = 26; mostly crystal clasts except where in sedimentary 120 

clasts of NWA 703429] obscured internal zoning, and these grains were not considered in our 121 

study beyond inspecting grain outlines for signs of metamorphic forms (e.g., rounding, granular 122 

neoblasts). All zircon grains in lithic clasts were found to have either typical prismatic form (Fig. 123 

1) or irregular forms ranging from euhedral to conformable with boundaries with host grains 124 

(Fig. S4). Zircon crystal clasts are generally anhedral, with some retaining one to two faceted 125 

surfaces. Metamorphic features were noted in the rounded form of two crystal clasts (although 126 

surface transport is another possibility for one grain) and a fractured igneous clast with ~300 nm 127 

wide possible metamorphic overgrowths (Table S1). The internal microstructures of the zircon 128 

and baddeleyite populations are dominated by primary zoning consistent with an igneous origin. 129 

Internal zoning in crystal clasts is frequently planar, and truncated at margins indicating that they 130 

were parts of larger igneous grains. Many crystal clasts were likely released into the fine grained 131 

matrix through comminution of igneous clasts during high energy deposition of the breccia (Figs. 132 

S4,5). The observations are similar for baddeleyite as grains within rock clasts exhibit euhedral 133 

to subhedral habit, and concentric internal zoning (Fig. S7). Crystal clasts of baddeleyite are 134 
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more subhedral to anhedral but exhibit the same internal zoning as within lithic clasts (Fig. S9) 135 

and lithologies representing a younger martian crust33.  136 

 High resolution electron backscatter diffraction (EBSD) mapping of 69 zircon grains, 137 

including 4.3 Ga grains29, revealed two categories of lattice orientation change. Almost all grain 138 

deformations are  discrete (1° to 10°) offsets across recent, open fracture sets, often conjugate, 139 

that are continuous with the launch-related fractures of host minerals and matrix (Fig. 1, Figs. 140 

S4,5). Zircon between the fractures often exhibits low, 1° to 3°,  crystal plastic deformation (Fig. 141 

S6) that could be related to launch or a pre-launch shock event that created the co-existing 142 

spherules in the breccia. One zircon grain was found to exhibit clear pre-launch shock 143 

deformation, manifest as a set of planar deformation bands (Fig. S11) representing a minimum 144 

shock loading in the range of 10 GPa to 20 GPa based on Earth analogues10. These shock-145 

induced microstructures formed on Mars as they are clearly cross-cut by, and therefore pre-date, 146 

launch-induced fracturing In summary, 98% of zircon grains exhibit a state of no to low (<10 147 

GPa) shock pressure metamorphism incurred during their time on Mars. 148 

 All 29 baddeleyite grains analyzed by EBSD exhibit some combination of primary and 149 

shock-related twin domains. The primary igneous twinning is the same as that observed in 150 

terrestrial baddeleyite [i.e. {100} and {110} twins34] (Table S1). It is overprinted by µm to sub-151 

µm subgrains separated by either straight, high angle twin boundaries (18°/{001}) or irregular, 152 

curved boundaries. In some grains, these discontinuous boundaries host domains with weak 153 

diffraction. The majority of grains (n = 26) displays three orthogonally related (90°) groupings of 154 

orientations in {100}, {010} and {001}, as seen in the pole figures of Figs. S8, S10). In four 155 

grains (NWA 7475; F6396, F14987, F3590, F3244; Table 1) these relationships are defined by a 156 

small number of data (50-120 nm) in the EBSD map. For all orthogonally twinned grains, a 157 
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single group of orientations forms 18° cross shapes. The remaining two orientation groupings are 158 

either tightly clustered (<3°) or linearly spread / loosely clustered (<10°), due to low magnitude 159 

(1-5°) crystal plastic deformation (e.g. NWA 7475, F28444 {001}). These crystallographic 160 

features are comparable to those observed in baddeleyite exposed to shock metamorphism in the 161 

5 to 20 GPa regime, as calibrated at the Sudbury impact structure (Canada)19. Two 162 

metamorphosed baddeleyite crystal clasts were identified exhibiting replacement rims of zircon 163 

(Figs. S12,13), likely due to heating and reaction with silica-rich melt prior to emplacement in 164 

breccia (Fig. S12).  165 

  Atom probe tomography (APT) was carried out on two zircon grains and two baddeleyite 166 

grains from Mars to test for nano-scale clustering of Pb and Al as seen in high temperature 167 

(>900°C) shock metamorphosed terrestrial zircon (Fig. S14). Three microtips of a euhedral 168 

zircon grain in a lithic clast (Fig. S5,) and one microtip from a subhedral igneous zircon crystal 169 

clast (Fig. S6) have mass spectra that match those of terrestrial reference zircon35 and exhibit 170 

uniform distributions of the trace elements Al and Y (Figs. S5,6). Likewise, APT analysis of 171 

euhedral baddeleyite attached to ilmenite (Fig. S7) and a baddeleyite crystal clast (Fig. S9) 172 

yielded mass spectra that match reference terrestrial baddeleyite35 and exhibit homogeneous 173 

trace elemental distributions of Fe and U. These nano-scale data agree with micro-scale zircon 174 

and baddeleyite observations and the metamorphic state of the host minerals; all indicate 175 

predominantly low-grade (<10 GPa, <450°C) shock and thermal metamorphic conditions 176 

throughout the >4.43 billion history of the crustal terrain that sourced the igneous clasts in the 177 

breccia. 178 

Comparison of the microstructure and Pb-loss characteristics of these grains to those 179 

from impacted crusts on the Earth and Moon show a marked difference (Table 1). Zircons from 180 
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across the meta-igneous crust of the ~100 km diameter central uplift of the largest known impact 181 

on Earth, the Vredefort dome36, exhibit micro-features of >20 GPa shock metamorphism in 87% 182 

of grains (Table 1). Lunar zircon surveys reveal that the majority (71%) of >4 Ga grains in 183 

Apollo impact breccias16,37 show such features. The opposite case is found for the martian 184 

polymict breccia wherein 98% of the zircons show weak to no shock deformation >20 GPa 185 

during Mars residence. Likewise the baddeleyite grains exhibit microstructures that match those 186 

in weak to moderately shocked domains of young martian shergottite, but none of the features of 187 

grains near their launch-generated melt pockets20. This remarkably low-intensity shock history 188 

for early Mars accessory minerals is in concert with the reported U-Pb systematics which fail to 189 

reveal impact-related Pb-loss10 and instead preserve ancient, concordant (U-Pb) ages of  4.428 ± 190 

0.025 Ga24 , and up to 4.476 ± 0.001 Ga 28 for zircon, and as old as 4.382 ± 0.06 Ga for 191 

baddeleyite29 (Table S4). 192 

Early giant impact and opportunity for abiogenesis 193 

 By pairing recent chronological constraints9,28 with our nano-and microstructural 194 

measurements we can refine the history of Early Mars with regard to the timing of maximum 195 

impact flux on its earliest stable crust and the time at which that crust reached habitable 196 

conditions. Recent high-precision geochronology of NWA 7034 zircon grains reveals a precursor 197 

4.55 Ga andesitic crust on Mars that melted to crystallize a secondary crust over a 50 million 198 

year span of igneous activity between 4.476 ± 0.001 Ga and 4.430 ± 0.001 Ga28. It is likely that 199 

the baddeleyite has a similar paragenesis, as it has an age range that is similar to zircon, is known 200 

to crystallize from mafic magmas that solidify earlier in crustal differentiation sequence, and is 201 

the dominant zirconium phase in igneous rocks from Mars38. The low shock levels of most of the 202 

accessory minerals are consistent with the co-existence of primary, crystalline plagioclase in 203 
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igneous clasts hosting zircon (e.g., Fig. 1) and the low shock state of rock-forming minerals in 204 

general26. Exsolution lamellae in pyroxene and ilmenite in crystal and lithic clasts of the host 205 

rocks may indicate residence of the parent terrain near the surface of Mars25,26, and 206 

thermochronology data indicate an upper crustal residence since 4.3 Ga9. Taken together, the 207 

zircon and baddeleyite population in Martian polymict breccia meteorites and their host rocks 208 

derive from a crustal terrain that did not experience moderate to high shock pressures (20 - 80 209 

GPa), regional or local thermal (>450 °C) effects, or Pb-loss after 4.476 ± 0.001 Ga, the age of 210 

the oldest concordant zircon. These observations provide useful brackets on the timing of giant 211 

impact and habitability on early Mars. 212 

Calculations of heat thresholds for early life during bombardment relate to the energy-213 

release of impactors, and an impactor diameter of 500 km is sufficient to eliminate survivable 214 

conditions for deep thermophiles on Mars and Earth39. An impactor as large as the size of one 215 

Ceres (~1000 km diameter) is proposed to have struck early Mars to create its distinctive 216 

hemispheric crustal dichotomy in thickness and topography40, and would have had profound 217 

shock pressure and thermal consequences for crustal minerals at all scales. We can place the time 218 

interval for the planet-shaping impactor collision at 4.51 ± 0.04 Ga based on the upper bracket of 219 

4.55 Ga for first crust formation28, and a lower bracket based on the weak shock and thermal 220 

metamorphic history of our samples of the secondary crust and its oldest concordant zircon age 221 

of 4.476 ± 0.001 Ga28 (Fig. 2). This agrees with the minimum age bracket of 4.42 ± 0.07 Ga for 222 

dichotomy formation derived from Sm-Nd geochronology41, with which, however, it was 223 

impossible to distinguish the cause for the dichotomy as due to mantle-overturn or giant impact9. 224 

Recent Lu-Hf chronological constraints show that mantle overturn was complete within 20 225 

million years of planet formation28 and thus falsify an endogenous origin for the dichotomy due 226 
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to 1-degree (i.e., whole) mantle overturn, as the latter  requires >100 million years to actuate42. It 227 

is possible that the zircon and baddeleyite crystallization events between 4.476 ± 0.001 Ga and 228 

4.430 ± 0.001 Ga28 represent the long period of crystallization following global melting of 229 

primary crust by the giant impact (Fig. 2) in view of the high impactor content of the igneous 230 

clasts24. 231 

This early, 4.51 ± 0.04 Ga age for the formation of the hemispheric dichotomy aligns 232 

with the period of Moon formation4,5, and is a maximum age for habitability conditions (Fig. 2). 233 

In fact, it establishes the start of the very early time period for which volatiles, including water 234 

and organic compounds, could have been liberated and accumulated at the surface and in the 235 

near subsurface through volcanic processes43,44 following giant impact. A global equivalent layer 236 

of water in the range of 229 meters is thought to have been present at the martian surface early in 237 

its history through such volcanic degassing45, which is enough to account for some of the early 238 

water-related geomorphic features and may support the former presence of shallow seas. Our 239 

shock pressure reconstruction for this period indicates the existence of a weakly shocked crustal 240 

terrain that, in regard to pressure, was habitable from the beginning. The main threat from shock 241 

pressure to micro-organisms in the early crustal terrains would have been the mechanical 242 

shearing effects on cell walls46, however such effects are well-known to be highly heterogeneous 243 

at the micro-scale15. Moreover, the terrain did not experience shock pressures >15 GPa, i.e. well 244 

below the known upper limit of viability of 78 GPa7. 245 

It appears therefore that temperature, rather than shock pressure, was the more important 246 

of the two factors limiting the onset of habitability of the early Mars crust. The two are tightly 247 

linked during the bombardment period and have been modelled with respect to crustal 248 

habitability volumes relative to early vs. late timing of peak impactor flux3. Our mineral 249 
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evidence supports the ‘classical post-accretion’ model3 of peak bombardment beginning at 4.57 250 

Ga47 with monotonic decline causing local impact-effects (e.g., our few shocked grains, Table 251 

S1), relict terrains unmodified by intense metamorphism, and crust viable for hyperthermophiles 252 

down to 8 km as early as 4.4 Ga. This is in line with U-Pu/Xe gas thermochronology results for 253 

whole rock samples of NWA 7034 that yield cooling as early as 4.319 ± 0.046 Ga below 254 

temperatures of at least ~450°C based on comparison with Pb behaviour in co-existing 255 

phosphates9. For the Rabt Sbayta polymict breccia we place a conservative age estimate of 4.2 256 

Ga for the time at which the crustal fragments cooled to the thermal habitability window of 257 

~160°C based on modeled rates of crustal thermal decay following post-accretion bombardment3 258 

(Fig. 2). We note that there is no evidence that our sample of the southern highlands of Mars 259 

suffered a later global, thermal or structural, modification of crust and hydrosphere by the 260 

putative 4.0 Ga to 3.8 Ga LHB2. For the Earth, the LHB is predicted to have been thermally 261 

cataclysmic for life, melting the outer crust down to 10 km, due to the cumulative effects of 262 

impact-triggered surface melting and pressure release melting from the early mantle48 (Fig. 2). If 263 

indeed such an event occurred, its effects were not pervasive on Mars. This is consistent with 264 

dynamical modelling49 and isotopic evidence50 proposing either that Mars escaped an LHB, or, 265 

our favoured hypothesis, that genitive planet migration occurred within the first 100 million 266 

years of accretion51 such that an LHB never took place.  267 

 The time window for abiogenesis on Mars could have been as long as 700 million years, 268 

from 4.2 to 3.5 Ga, based on evidence that the martian surface became much less hospitable by 269 

approximately 3.5 Ga52,53. This 700-million-year period is longer than Earth’s Phanerozoic Eon, 270 

and more than the amount of time between accretion and the first signs of life on Earth at ~3.7 271 

Ga54. Based on terrestrial geology, Mars’ crust could pre-date the oldest known inhabited surface 272 
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of Earth by half a billion years (Fig. 2). Alternatively, based on recent dynamical models51, it is 273 

plausible that Earth, like Mars, experienced major bombardment only in the first ~100 million 274 

years, and likewise exhibited early habitable crustal platforms. Ar-Ar geochronology and 275 

cosmogenic nuclide exposure histories suggest that the earliest Mars crust fragments are derived 276 

from a terrain of hundreds of square kilometres which remained near the present surface9 as 277 

opposed to having been deeply buried by later volcanism28. It is possible that this rock record of 278 

earliest habitability remains accessible in the modern martian crust and pertinent to future 279 

mission planning for sample return. 280 

 281 
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Materials and Methods 435 

Electron microscopy 436 
 437 

Petrographic slabs, thick and thin sections were created from the collected samples using 438 
standard sample preparation techniques29. Sections were subjected to a final polishing step using 439 
a colloidal silica solution (0.05 μm, pH 8.5) and a vibratory polisher. Electron microscopy was 440 
performed with a Hitachi SU6600 field emission scanning electron microscope (FE-SEM; 441 
Schottky emitter) located in the Zircon and Accessory Phase Laboratory at the University of 442 
Western Ontario, London, Ontario. Features of interest (e.g., zircon and baddeleyite) were 443 
initially located using backscatter electron (BSE) imaging (five segment solid-state detector) and 444 
energy dispersive spectroscopy (EDS; Oxford X-max 80 mm2 silicon drift detector) within 445 
Oxford INCA’s Feature mapping routine, at an accelerating voltage of 15 kV; these features 446 
were subsequently overlain on BSE/EDS section montages by plotting the feature’s stage 447 
coordinates using Esri’s ArcGIS.  448 
Automated SEM-BSE-EDS mapping was used to identify target grain locations and dimensions 449 
prior to characterizing micro- and nano-scale features. Many hundreds of grains, mostly in the 1 450 
µm to 9 µm size range, were detected and are mostly angular fragments in the breccia matrix. 451 
The size fraction larger than 10 µm in maximum dimension (n = 147) (Table S1) was examined 452 
using electron microscopy, including Secondary Electrons (SE), Backscattered Electrons (BSE), 453 
Cathodoluminescence (CL), and Electron Backscatter Diffraction (EBSD), to determine internal 454 
zoning patterns, lattice orientation microstructure, crystallinity, and any metamorphic 455 
polymorphs (e.g., reidite) or phase-transition heritage. There is no directional fabric in the grain 456 
populations, and hence the analyzed surfaces include random intersections of larger (>50 µm) 457 
grains such as those liberated by crushing28 and shown on some surfaces (e.g., Fig. S4).  458 

Each crystalline grain (n = 121 for martian samples) was examined using BSE and/or CL 459 
for microscopic primary features, secondary metamorphic features11, and the suite of shock 460 
metamorphic indicators described above. The largest (by length) features of each sample were 461 
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extensively imaged using secondary electron (SE), BSE, and EDS point analysis to capture 462 
morphology and associated phases. Several of those grains were then analyzed further using 463 
other methods, including EDS mapping, cathodoluminescence (CL) and electron backscatter 464 
diffraction (EBSD). Colour CL images were collected for all but NWA 7906 with a customized 465 
Gatan ChromaCL RGB+UV detector system and Gatan Digital Micrograph software, using a 10 466 
kV electron beam and 250 us pixel time. Microstructural EBSD orientation data was captured 467 
with an Oxford Nordlys detector and HKL’s Channel5 software.  Samples were tilted to 70o 468 
within the SEM chamber and raised to a working distance of 19.0 mm. Kikuchi patterns were 469 
generated using a 20 kV, 8.0 nA electron beam, and captured using the camera settings of 24 470 
ms/frame acquisition time, 4x4 pixel binning, high gain, and frame averaging of 7. Patterns were 471 
then indexed using a minimum of five and a maximum of seven Kikuchi bands, and a Hough 472 
transform resolution setting of 60. Beam step-sizes during mapping were 60nm to 125 nm but 473 
most commonly = 125nm. A mean angular deviation (MAD) discriminator was set to a value of 474 
1.5, above which analyses were assigned a zero solution to avoid indexing of poor quality 475 
EBSPs. Post-analysis noise reduction processing was not applied to any of the data sets other 476 
than removing erroneous “wild spikes”. Orientation microstructure and crystallographic analysis 477 
by EBSD was used to evaluate pre- and post-launch shock-induced microstructures and search 478 
for signs of high-pressure polymorphs or their reversion products.  The same instruments and 479 
procedures were used for the shock microstructural survey of zircons in petrographic thin 480 
sections across the Vredefort impact structure (Table 1) as detailed in the source M.Sc. thesis by 481 
C. Davis (https://ir.lib.uwo.ca/etd/4185/). NWA 7906 was analyzed at the Natural History 482 
Museum Vienna, Austria. CL images were obtained using a Gatan MonoCL (MonoCL4R) 483 
system attached to a JEOL JSM 6610‐LV SEM. Monochromatic images are obtained by using 484 
wavelength‐filtered (monochromatic) red (R)‐green (G)‐–blue (B) setting that yield false‐color 485 
(composite) RGB images, while panchromatic (gray‐scale) images result from the integration of 486 
the luminescence over all emissions. Operating conditions for all SEM‐Mono CL images were 487 
15 kV accelerating voltage, 1.2 nA beam current, and a working distance of ~11 mm.  488 
  489 
Atom probe tomography (APT) 490 

APT allows the three-dimensional mapping and identification of elements and isotopes 491 
within minerals13, APT data sets were prepared by gallium focused ion beam milling at 492 
CAMECA® Instruments Inc., Madison, Wisconsin.  Standard liftout and mount techniques were 493 
used to produce the desired specimen shape with a radius of curvature < 100 nm55,56.  A final low 494 
voltage (10 kV) milling step was preformed to help minimize gallium implantation and damage.  495 
Prepared microtips were analyzed at CAMECA using a LEAP® 4000X HRTM atom probe 496 
equipped with a reflectron flight path and operating in laser pulsed mode.  Field evaporation of 497 
each microtip was induced under ultrahigh vacuum by applying a high electric field (achieved by 498 
applying 4-12 kV) at cryogenic conditions (∼50–60 K) to the specimen apex.  In laser pulse 499 
mode, ionization and evaporation of atoms on the specimen surface was promoted by an 500 
ultraviolet laser (355 nm wavelength) with pulse energies and frequencies that varied between 501 ∼100–400 pJ and ∼150–200 kHz, respectively.  During acquisition, the mass-to-charge ratio of 502 
the ions is determined through time–of–flight mass spectrometry by measuring the time from 503 
field evaporation to detection and equating it to their kinetic energy. A spatial reconstruction of 504 
the specimen is achieved by projecting the ions from a position–sensitive detector back to the tip 505 
apex and considering the sequential order of evaporation.  Complete detail on data acquisition 506 
and reconstruction with the local electrode atom probe are described elsewhere57. 507 
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Data analysis and ranging of mass spectra were conducted using the Cameca IVASTM 3.6.12 508 
software.  For each microtip dataset, corrected ionic counts of major and trace elements were 509 
calculated through the subtraction of background counts from the raw ionic counts.  Background 510 
counts were measured using the local range–assisted background model in IVAS.  In all 511 
scenarios, the peak locations of trace element (e.g., Y, Fe, Al, U and Pb) were identified within 512 
each microtip spectrum using the BR266 zircon standard and baddeleyite standard Phalaborwa as 513 
reference35.  For individual peaks, range bounds were set by eye from baseline to baseline to 514 
encompass the entirety of each peak21.  It is noted here however, that there are no standard 515 
protocols with which to set range widths, and it is a key source of variation that is actively being 516 
explored in the field (eg.,57,58).  Details on acquisition and spatial reconstruction parameters 517 
selected for this work are given in Supplementary Data Table 3. 518 
 519 
Data and materials availability: All data is summarized and available in the main text or the 520 
supplementary materials. Raw instrument data is available to editors and reviewers upon request. 521 
 522 
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 533 

 534 
Figure Captions: 535 
 536 
Fig. 1. Example of early Mars crust and igneous zircon in polymict breccia meteorite NWA 537 

11220; (a) optical micrograph showing twinned plagioclase (grey and white banding), 538 

orthopyroxene (yellow) and clinopyroxene (red/blue). (b) Higher magnification EBSD lattice 539 

orientation map (white box in (a)) indicating highly crystalline minerals coloured according to 540 

Euler angle relative to sample urface, except for zircon grain (red), coloured according to crystal 541 

axis parallel to surface. (c) highest magnification SE and CL images, and EBSD orientation map, 542 

for euhedral, igneous zircon illustrating launch-related [<15 GPa25] open fractures (white arrow). 543 
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Such grains testify to the absence of major shock metamorphic effects on the source crust 544 

domain since  ≥4.43 billion years ago.  545 

 546 
 547 
Fig. 2. Timeline of early Mars bombardment history and habitability compared to Earth. 548 

Timing of major events in the early histories of Mars and Earth showing the classical post-549 

accretion bombardment flux curve3 (red dashes), and an early period of planet-scale impact 550 

effects such as formed the hemispheric dichotomy; both dictated by the existence of  ≤4.476 551 

±0.001 Ga grains of zircon and baddeleyite grains and host crust, unaltered by shock 552 

metamorphism >20 GPa on Mars. Note that the Mars giant impact period overlaps current age 553 

estimates for Moon formation. Early Mars crust was below shock pressure habitability after this 554 

time. Thermal habitability of early Mars crust was possible at 4.4 Ga3, and based on the oldest U-555 

Pu/Xe cooling date of 4.32 Ga for our samples9 we estimate that the source crustal terrane was 556 

habitable by 4.2 Ga, a time of accelerated volatile release following dichotomy formation.  Our 557 

samples of Mars crust did not experience later, pervasive cataclysm at ~3.9Ga during the 558 

putative late heavy bombardment (LHB)6. Habitable crust on Mars predates Earth’s oldest 559 

known biosignatures54 by as much as ~500 million years. The absence of shock metamorphic 560 

features in Hadean Earth zircon13 and recent dynamical modelling51 allow that Earth also had 561 

opportunity for early abiogenesis. Inset: NASA-MOLA false-color topographic model of the 562 

Mars surface showing the hemispheric dichotomy and southern highlands (orange), a likely 563 

source for the Martian polymict breccia meteorites24–26.    564 

  565 
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Table 1. Results of in-situ shock microstructural analyses of zirconium minerals in polished 566 

sections of bombarded crust from across the central uplift of the Vredefort impact 567 

structure compared to early Mars samples. Earth values similar to Moon results (see text) (*) 568 

Shock metamorphism is characterized by the occurrence of any of the following features; planar 569 

or curviplanar features, impact-melt glass inclusions, crystal plastic deformation, high pressure 570 

polymorphs or reversion products thereof, granularization or neobastic growth, and nano-scale 571 

clustering of trace elements.   572 

 573 

 574 

 575 

 576 

 577 

 578 

 579 

Vredefort 
(Earth) 
Samples 

Distance 
from 

center of 
impact 

Coordinates (UTM) Total 
grains 

#  shock 
metamor-
phosed* 

% shock 
metamor-
phosed* 

V15-39 ∼5 km 543699 m E 7014140 m S 45 42 94 
V15-16 ∼8.6 km 540091 m E 7010527 m S 48 48 100 
V49-1 ∼8.9 km 542531 m E 7015741 m S 41 37 90 
V15-46 ∼17.1 km 539943 m E 7025719 m S 48 41 85 
V-62 ∼22.8 km 534627 m E 7029025 m S 33 32 97 

V15-55 ∼24.5 km 563809 m E 7030330 m S 36 18 50 
Total - - - 251 218 87% 
Mars samples; 

NWA 7034, 7475, 
7906, 11220, Rabt 

Sbayta 003 

      

Total  - - 121 3 2% 



 

24 

 580 



=1 µm; Copy of IPF_Zircon; Step=0.125 µm; Grid116x329

(b)

SE

(a)

(d)

OPTICAL

EBSDCL

EBSD

(e)(c)

Figure 1. Moser et al. ; NGS-2018-09-02050A   Mar 27, 2019



Proto
Earth 
forms

Oldest knownEarth 
crust/ biosignature

~3.8 Ga

Earth

Earth habitability >4.0 Ga?

Bombardment and Habitability Timelines for Mars and Earth

dN 
dt

0.1000

0
Mars

4.404.504.55 3.704.30 4.20 4.10 4.00

Post-accretion


bom
bardm

ent flux

0.250

0.750

Earliest Earth zircons (no 
shock metamorphism)

secondary crust28 below shock 
pressure habitability by 4.48 Ga

0.500

time (Ga)

Mars 
forms

Giant impact 
period;

hemispheric
dichotomy

 forms 
crust domain reaches 
habitability by ~4.2 Ga

Giant impact;

Moon forms

U-Pu/Xe cooling age9

4.32+/-0.05

<120
o
C<800

o
C <450

o
C

No global LHB

Figure 2. Moser et al. ; NGS-2018-09-02050A   Mar 27, 2019


	Article File
	Figure 1

