60 research outputs found

    Pre and post fire carbon dynamics in a Florida Scrub oak

    Get PDF
    Scrub oak is a xeromorphic shrub ecosystem discontinuously distributed in coastal and inland Florida. It supports a high biodiversity which includes a large number of endangered and threatened species. Its structural features are maintained by a fire return cycle of 7 to 10 years which maintains the biodiversity. Management of fire prone ecosystems such as this raises the question of whether the management strategy contributes to the system being a carbon sink or carbon source over the long-term. We used eddy covariance and biometric approaches to measure carbon dynamics in a Florida scrub oak ecosystem located at Kennedy Space Center in east Central Florida from April 2004 to December 2007. The study site was controlled burned in February 2006. Two years previous to fire, the site experienced average precipitation but drought conditions during the two years after fire. Net ecosystem production (NEP) was 419 g C m-2 yr-1 during the first year of measurements, and the ecosystem incorporated 823 g C m-2 during the 22 months before the fire. Aboveground net primary production (NPP) represented 50% of annual NEP. Carbon released by fire reached 316 g C m-2. Ecosystem respiration (Re) dominated the carbon balance during the first six months after fire, and the ecosystem released an extra 119 g C m-2. However, gross ecosystem production (GEP) increased with leaf area index (LAI) after fire, dominating the carbon balance during the following six months. The ecosystem was a carbon sink of 88 g C m-2 yr-1 during the first year after the fire. Leaf area index (LAI) reached 1.54 m2 m-2 by October 2007 (80% of pre-burn value for the same time period). The scrub oak ecosystem was a continuous carbon sink six months after the fire despite the dominant drought conditions during 2006 – 2007. The ecosystem offset 80% (251 g C m-2) of the carbon released in the fire during the following twenty two months after the fire. Considering the fire return cycle of 7 to 10 years and the fact that the study site and a similar site nearby incorporated more than 400 g C m-2 yr-1 during the two years before fire, this scrub oak is a net carbon sink in the landscape under current management strategies

    Environmental and biological controls on water and energy exchange in Florida scrub oak and pine flatwoods ecosystems

    Get PDF
    Scrub oak and pine flatwoods are two contrasting ecosystems common to the humid subtropical climate of Florida. Scrub oak forests are short in stature (<2 m) and occur on well-drained sandy soils, and pine flatwoods are much taller and occur in areas with poorly drained soils. Eddy covariance measurements were made from January 2001 to February 2003 over a scrub oak forest and from January 2002 to February 2003 over an adjacent pine flatwoods located on in central Florida, USA, and exposed to similar atmospheric conditions to evaluate how the dynamics of latent heat (lambda E) and sensible heat (H) exchanges are affected by environmental and biological variables. Annual evapotranspiration (Et) for the scrub oak was 737 and 713 mm in 2001 and 2002, respectively. Et was comparatively higher, 812 mm, in 2002 at the pine flatwoods due to higher soil moisture and leaf area. In both ecosystems, springtime increases in lambda E coincided with increasing leaf area and evaporative demand. However, H was the main energy-dissipating component in the spring due to the seasonal decrease in soil water content in the upper soil profile. In the spring, mean weekly Bowen ratio (beta, i.e. H/lambda E) values reached 1.6 and 1.2 in the scrub oak and pine flatwoods, respectively. With the onset of the summertime rainy season, lambda E became the dominant energy flux and beta fells to < 0.4. In both ecosystems, beta was strongly controlled by the interaction between leaf area and soil moisture. The lowest values of the decoupling coefficient (Omega, 0.2 and 0.25 scrub oak and pine flatwoods, respectively) also occurred during the dry springtime period indicating that surface conductance (g(s)) was the mechanism controlling energy partitioning causing high beta in both ecosystems. Et increases in the spring, when water in the upper soil profile was scarce and strongly retained by soil particles, indicated that plants in both ecosystems obtained water from deeper sources. The results from this research elucidate how energy partitioning differs and is regulated in contrasting ecosystems within the Florida landscape, which is important for refining regional hydrological and climate models

    Environmental and biological controls on water and energy exchange in Florida scrub oak and pine flatwoods ecosystems

    Get PDF
    Scrub oak and pine flatwoods are two contrasting ecosystems common to the humid subtropical climate of Florida. Scrub oak forests are short in stature (\u3c2 \u3em) and occur on well-drained sandy soils, and pine flatwoods are much taller and occur in areas with poorly drained soils. Eddy covariance measurements were made from January 2001 to February 2003 over a scrub oak forest and from January 2002 to February 2003 over an adjacent pine flatwoods located on in central Florida, USA, and exposed to similar atmospheric conditions to evaluate how the dynamics of latent heat (lambda E) and sensible heat (H) exchanges are affected by environmental and biological variables. Annual evapotranspiration (Et) for the scrub oak was 737 and 713 mm in 2001 and 2002, respectively. Et was comparatively higher, 812 mm, in 2002 at the pine flatwoods due to higher soil moisture and leaf area. In both ecosystems, springtime increases in lambda E coincided with increasing leaf area and evaporative demand. However, H was the main energy-dissipating component in the spring due to the seasonal decrease in soil water content in the upper soil profile. In the spring, mean weekly Bowen ratio (beta, i.e. H/lambda E) values reached 1.6 and 1.2 in the scrub oak and pine flatwoods, respectively. With the onset of the summertime rainy season, lambda E became the dominant energy flux and beta fells to \u3c 0.4. In both ecosystems, beta was strongly controlled by the interaction between leaf area and soil moisture. The lowest values of the decoupling coefficient (Omega, 0.2 and 0.25 scrub oak and pine flatwoods, respectively) also occurred during the dry springtime period indicating that surface conductance (g(s)) was the mechanism controlling energy partitioning causing high beta in both ecosystems. Et increases in the spring, when water in the upper soil profile was scarce and strongly retained by soil particles, indicated that plants in both ecosystems obtained water from deeper sources. The results from this research elucidate how energy partitioning differs and is regulated in contrasting ecosystems within the Florida landscape, which is important for refining regional hydrological and climate models

    Challenges and Opportunities to Increase Carbon Sequestration in Subtropical Grazing Lands

    Get PDF
    Livestock production has a significant environmental footprint. However, adoption of regenerative grazing land management practices can serve as a means of producing food with lower, or even net positive environmental impacts. Globally, much of the grazing land ecosystems are degraded due to improper management. This is particularly true in the southeastern US, where extensive areas of planted pastures are degraded due to inadequate nutrient and soil management. In this presentation, we will discuss the opportunities and challenges associated with increasing soil and ecosystem C sequestration in subtropical grazing lands through regenerative management practices. Introductio

    A Novel Diffuse Fraction-Based Two-Leaf Light Use Efficiency Model: An Application Quantifying Photosynthetic Seasonality Across 20 AmeriFlux Flux Tower Sites

    Get PDF
    . Diffuse radiation can increase canopy light use efficiency (LUE). This creates the need to differentiate the effects of direct and diffuse radiation when simulating terrestrial gross primary production (GPP). Here, we present a novel GPP model, the diffuse-fraction-based two-leaf model (DTEC), which includes the leaf response to direct and diffuse radiation, and treats maximum LUE for shaded leaves (εmsh defined as a power function of the diffuse fraction (Df)) and sunlit leaves (εmsu defined as a constant) separately. An Amazonian rainforest site (KM67) was used to calibrate the model by simulating the linear relationship between monthly canopy LUE and Df. This showed a positive response of forest GPP to atmospheric diffuse radiation, and suggested that diffuse radiation was more limiting than global radiation and water availability for Amazon rainforest GPP on a monthly scale. Further evaluation at 20 independent AmeriFlux sites showed that the DTEC model, when driven by monthly meteorological data and MODIS leaf area index (LAI) products, explained 70% of the variability observed in monthly flux tower GPP. This exceeded the 51% accounted for by the MODIS 17A2 big-leaf GPP product. The DTEC model’s explicit accounting for the impacts of diffuse radiation and soil water stress along with its parameterization for C4 and C3 plants was responsible for this difference. The evaluation of DTEC at Amazon rainforest sites demonstrated its potential to capture the unique seasonality of higher GPP during the diffuse radiation-dominated wet season. Our results highlight the importance of diffuse radiation in seasonal GPP simulation

    Disentangling the role of photosynthesis and stomatal conductance on rising forest water-use efficiency

    Get PDF
    Multiple lines of evidence suggest that plant water-use efficiency (WUE) -the ratio of carbon assimilation to water loss- has increased in recent decades. Although rising atmospheric CO2 has been proposed as the principal cause, the underlying physiological mechanisms are still being debated, and implications for the global water cycle remain uncertain. Here, we addressed this gap using 30-y tree ring records of carbon and oxygen isotope measurements and basal area increment from 12 species in 8 North American mature temperate forests. Our goal was to separate the contributions of enhanced photosynthesis and reduced stomatal conductance to WUE trends and to assess consistency between multiple commonly used methods for estimating WUE. Our results show that tree ring-derived estimates of increases in WUE are consistent with estimates from atmospheric measurements and predictions based on an optimal balancing of carbon gains and water costs, but are lower than those based on ecosystemscale flux observations. Although both physiological mechanisms contributed to rising WUE, enhanced photosynthesis was widespread, while reductions in stomatal conductance were modest and restricted to species that experienced moisture limitations. This finding challenges the hypothesis that rising WUE in forests is primarily the result of widespread, CO2-induced reductions in stomatal conductance

    Seasonal variation in the canopy color of temperate evergreen conifer forests

    Get PDF
    Evergreen conifer forests are the most prevalent land cover type in North America. Seasonal changes in the color of evergreen forest canopies have been documented with near‐surface remote sensing, but the physiological mechanisms underlying these changes, and the implications for photosynthetic uptake, have not been fully elucidated. Here, we integrate on‐the‐ground phenological observations, leaf‐level physiological measurements, near surface hyperspectral remote sensing and digital camera imagery, tower‐based CO₂ flux measurements, and a predictive model to simulate seasonal canopy color dynamics. We show that seasonal changes in canopy color occur independently of new leaf production, but track changes in chlorophyll fluorescence, the photochemical reflectance index, and leaf pigmentation. We demonstrate that at winter‐dormant sites, seasonal changes in canopy color can be used to predict the onset of canopy‐level photosynthesis in spring, and its cessation in autumn. Finally, we parameterize a simple temperature‐based model to predict the seasonal cycle of canopy greenness, and we show that the model successfully simulates interannual variation in the timing of changes in canopy color. These results provide mechanistic insight into the factors driving seasonal changes in evergreen canopy color and provide opportunities to monitor and model seasonal variation in photosynthetic activity using color‐based vegetation indices

    Direct and indirect effects of climatic variations on the interannual variability in net ecosystem exchange across terrestrial ecosystems

    Get PDF
    Climatic variables not only directly affect the interannual variability (IAV) in net ecosystem exchange of CO2 (NEE) but also indirectly drive it by changing the physiological parameters. Identifying these direct and indirect paths can reveal the underlying mechanisms of carbon (C) dynamics. In this study, we applied a path analysis using flux data from 65 sites to quantify the direct and indirect climatic effects on IAV in NEE and to evaluate the potential relationships among the climatic variables and physiological parameters that represent physiology and phenology of ecosystems. We found that the maximum photosynthetic rate was the most important factor for the IAV in gross primary productivity (GPP), which was mainly induced by the variation in vapour pressure deficit. For ecosystem respiration (RE), the most important drivers were GPP and the reference respiratory rate. The biome type regulated the direct and indirect paths, with distinctive differences between forests and non-forests, evergreen needleleaf forests and deciduous broadleaf forests, and between grasslands and croplands. Different paths were also found among wet, moist and dry ecosystems. However, the climatic variables can only partly explain the IAV in physiological parameters, suggesting that the latter may also result from other biotic and disturbance factors. In addition, the climatic variables related to NEE were not necessarily the same as those related to GPP and RE, indicating the emerging difficulty encountered when studying the IAV in NEE. Overall, our results highlight the contribution of certain physiological parameters to the IAV in C fluxes and the importance of biome type and multi-year water conditions, which should receive more attention in future experimental and modelling research

    Global transpiration data from sap flow measurements: the SAPFLUXNET database

    Get PDF
    Plant transpiration links physiological responses of vegetation to water supply and demand with hydrological, energy, and carbon budgets at the land?atmosphere interface. However, despite being the main land evaporative flux at the global scale, transpiration and its response to environmental drivers are currently not well constrained by observations. Here we introduce the first global compilation of whole-plant transpiration data from sap flow measurements (SAPFLUXNET, https://sapfluxnet.creaf.cat/, last access: 8 June 2021). We harmonized and quality-controlled individual datasets supplied by contributors worldwide in a semi-automatic data workflow implemented in the R programming language. Datasets include sub-daily time series of sap flow and hydrometeorological drivers for one or more growing seasons, as well as metadata on the stand characteristics, plant attributes, and technical details of the measurements. SAPFLUXNET contains 202 globally distributed datasets with sap flow time series for 2714 plants, mostly trees, of 174 species. SAPFLUXNET has a broad bioclimatic coverage, with woodland/shrubland and temperate forest biomes especially well represented (80 % of the datasets). The measurements cover a wide variety of stand structural characteristics and plant sizes. The datasets encompass the period between 1995 and 2018, with 50 % of the datasets being at least 3 years long. Accompanying radiation and vapour pressure deficit data are available for most of the datasets,while on-site soil water content is available for 56 % of the datasets. Many datasets contain data for species that make up 90 % or more of the total stand basal area, allowing the estimation of stand transpiration in diverse ecological settings. SAPFLUXNET adds to existing plant trait datasets, ecosystem flux networks, and remote sensing products to help increase our understanding of plant water use, plant responses to drought, and ecohydrological processes.Fil: Poyatos, Rafael. Universitat Autònoma de Barcelona; EspañaFil: Granda, Víctor. Universitat Autònoma de Barcelona; EspañaFil: Flo, Víctor. Universitat Autònoma de Barcelona; EspañaFil: Adams, Mark A.. Swinburne University of Technology; Australia. University of Sydney; AustraliaFil: Adorján, Balázs. University of Debrecen; HungríaFil: Aguadé, David. Universitat Autònoma de Barcelona; EspañaFil: Aidar, Marcos P. M.. Institute of Botany; BrasilFil: Allen, Scott. University of Nevada; Estados UnidosFil: Alvarado Barrientos, M. Susana. Instituto de Ecología A.C.; MéxicoFil: Anderson Teixeira, Kristina J.. Smithsonian Tropical Research Institute; PanamáFil: Aparecido, Luiza Maria. Arizona State University; Estados Unidos. Texas A&M University; Estados UnidosFil: Arain, M. Altaf. McMaster University; CanadáFil: Aranda, Ismael. National Institute for Agricultural and Food Research and Technology; EspañaFil: Asbjornsen, Heidi. University of New Hampshire; Estados UnidosFil: Robert Baxter. Durham University; Reino UnidoFil: Beamesderfer, Eric. McMaster University; Canadá. Northern Arizona University; Estados UnidosFil: Carter Berry, Z.. Chapman University; Estados UnidosFil: Berveiller, Daniel. Université Paris Saclay; Francia. Centre National de la Recherche Scientifique; FranciaFil: Blakely, Bethany. University of Illinois at Urbana-Champaign; Estados UnidosFil: Boggs, Johnny. United States Forest Service; Estados UnidosFil: Gil Bohrer. Ohio State University; Estados UnidosFil: Bolstad, Paul V.. University of Minnesota; Estados UnidosFil: Bonal, Damien. Université de Lorraine; FranciaFil: Bracho, Rosvel. University of Florida; Estados UnidosFil: Brito, Patricia. Universidad de La Laguna; EspañaFil: Brodeur, Jason. McMaster University; CanadáFil: Casanoves, Fernando. Centro Agronómico Tropical de Investigación y Enseñanza; Costa RicaFil: Chave, Jérôme. Université Paul Sabatier; FranciaFil: Chen, Hui. Xiamen University; ChinaFil: Peri, Pablo Luis. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro de Investigaciones y Transferencia de Santa Cruz. Universidad Tecnológica Nacional. Facultad Regional Santa Cruz. Centro de Investigaciones y Transferencia de Santa Cruz. Universidad Nacional de la Patagonia Austral. Centro de Investigaciones y Transferencia de Santa Cruz; Argentin
    corecore