57 research outputs found

    Toe Walking as the Initial Symptom of a Spinocerebellar Ataxia 13 in a Patient Presenting with a Mutation in the KCNC3 Gene

    Get PDF
    This article at hand described a 4-year-old patient who initially presented with the symptoms of toe walking. As part of the diagnostic process, the patient was genetically tested to find the cause of the gait anomaly. The genetic test found a mutation in the KCNC3 gene. The variant c.1268G > A; p.Arg423His was found in a heterozygotic state. This variant is frequently described as a cause for spinocerebellar ataxia type 13 (SCA13) in the literature. Apart from toe walking as the most pronounced symptom, the patient displayed an instable gait with frequent falls and delayed speech development. The genetic test to determine the cause of the gait anomaly successfully diagnosed the patient with a previously undiscovered SCA13 and subsequently enabled the recommendation of personalized further treatment

    Distinct serum and cerebrospinal fluid cytokine and chemokine profiles in autoantibody-associated demyelinating diseases

    Get PDF
    Background: Demyelinating diseases of the central nervous system associated with autoantibodies against aquaporin-4 and myelin-oligodendrocyte-glycoprotein are mediated by different immunopathological mechanisms compared to multiple sclerosis. Objective: The purpose of this study was to evaluate serum and cerebrospinal fluid cytokine/chemokine profiles in patients with autoantibodies against aquaporin-4 or autoantibodies against myelin-oligodendrocyte-glycoprotein-associated demyelination compared to multiple sclerosis and autoimmune encephalitis. Methods: Serum and cerebrospinal fluid cytokine/chemokine levels were analysed using Procartaplex Multiplex Immunoassays. First, we analysed a panel of 32 cytokines/chemokines in a discovery group (nine aquaporin-4-antibody seropositive, nine myelin oligodendrocyte glycoprotein-antibody seropositive, eight encephalitis, 10 multiple sclerosis). Significantly dysregulated cytokines/chemokines were validated in a second cohort (11 aquaporin-4-antibody seropositive, 18 myelin oligodendrocyte glycoprotein-antibody seropositive, 18 encephalitis, 33 multiple sclerosis). Results: We found 11 significantly altered cytokines/chemokines in cerebrospinal fluid and serum samples in the discovery group (a proliferation-inducing ligand, fractalkine=CX3CL1, growth-regulated oncogene-\u3b1, interleukin-1 receptor antagonist, interleukin-6, interleukin-8=CXCL8, interleukin-10, interleukin-21, interferon-&3-induced protein-10=CXCL10, monokine induced by interferon-&3=CXCL9, macrophage inflammatory protein-1 f=CCL4). Most of these cytokines/chemokines were up-regulated in autoantibodies against aquaporin-4 or autoantibodies against myelin-oligodendrocyte-glycoprotein positive patients compared to multiple sclerosis. We confirmed these results for cerebrospinal fluid interleukin-6 and serum interleukin-8, growth-regulated oncogene-\u3b1, a proliferation-inducing ligand and macrophage inflammatory protein-1\u3b2 in the validation set. Receiver-operating characteristic analysis revealed increased levels of cerebrospinal fluid interleukin-6, serum interleukin-8 and growth-regulated oncogene-\u3b1 in most patients with autoantibody-associated neurological diseases. Conclusion: This study suggests that distinctive cerebrospinal fluid and serum cytokine/chemokine profiles are associated with autoantibody-mediated demyelination, but not with multiple sclerosis

    Midbrain–hindbrain malformations in patients with malformations of cortical development and epilepsy: A series of 220 patients

    Get PDF
    SummaryMidbrain–hindbrain malformations (MHM) may coexist with malformations of cortical development (MCD). This study represents a first attempt to investigate the spectrum of MHM in a large series of patients with MCD and epilepsy. We aimed to explore specific associations between MCD and MHM and to compare two groups of patients: MCD with MHM (wMHM) and MCD without MHM (w/oMHM) with regard to clinical and imaging features.Two hundred and twenty patients (116 women/104 men, median age 28 years, interquartile range 20–44 years at the time of assessment) with MCD and epilepsy were identified at the Departments of Neurology and Pediatrics, Innsbruck Medical University, Austria. All underwent high-resolution MRIs (1.5-T) between 01.01.2002 and 31.12.2011. Midbrain–hindbrain structures were visually assessed by three independent raters.MHM were seen in 17% (38/220) of patients. The rate of patients wMHM and w/oMHM differed significantly (p=0.004) in three categories of MCD (category I – to abnormal neuronal proliferation; category II – to abnormal neuronal migration; and category III – due to abnormal neuronal late migration/organization): MCD due to abnormal neuronal migration (31%) and organization (23%) were more commonly associated with MHM compared to those with MCD due to abnormal neuronal proliferation (9%). Extensive bilateral MCD were seen more often in patients wMHM compared to those w/oMHM (63% vs. 36%; p=0.004). In wMHM group compared to w/oMHM group there were higher rates of callosal dysgenesis (26% vs. 4%; p<0.001) and hippocampal abnormalities (52% vs. 27%; p<0.001). Patients wMHM were younger (median 25 years vs. 30 years; p=0.010) at the time of assessment and had seizure onset at an earlier age (median 5 years vs. 12 years; p=0.043) compared to those w/oMHM. Patients wMHM had higher rates of learning disability (71% vs. 38%; p<0.001), delayed developmental milestones (68% vs. 35%; p<0.001) and neurological deficits (66% vs. 47%; p=0.049) compared to those w/oMHM.The groups (wMHM and w/oMHM) did not differ in their response to antiepileptic treatment, seizure outcome, seizure types, EEG abnormalities and rate of status epilepticus. Presence of MHM in patients with MCD and epilepsy is associated with severe morphological and clinical phenotypes

    ARTICLE Bi-allelic loss-of-function variants in PPFIBP1 cause a neurodevelopmental disorder with microcephaly, epilepsy, and periventricular calcifications

    Get PDF
    PPFIBP1 encodes for the liprin-β1 protein, which has been shown to play a role in neuronal outgrowth and synapse formation in Drosophila melanogaster. By exome and genome sequencing, we detected nine ultra-rare homozygous loss-of-function variants in 16 individuals from 12 unrelated families. The individuals presented with moderate to profound developmental delay, often refractory early-onset epilepsy, and progressive microcephaly. Further common clinical findings included muscular hyper- and hypotonia, spasticity, failure to thrive and short stature, feeding difficulties, impaired vision, and congenital heart defects. Neuroimaging revealed abnormalities of brain morphology with leukoencephalopathy, ventriculomegaly, cortical abnormalities, and intracranial periventricular calcifications as major features. In a fetus with intracranial calcifications, we identified a rare homozygous missense variant that by structural analysis was predicted to disturb the topology of the SAM domain region that is essential for protein-protein interaction. For further insight into the effects of PPFIBP1 loss of function, we performed automated behavioral phenotyping of a Caenorhabditis elegans PPFIBP1/hlb-1 knockout model, which revealed defects in spontaneous and light-induced behavior and confirmed resistance to the acetylcholinesterase inhibitor aldicarb, suggesting a defect in the neuronal presynaptic zone. In conclusion, we establish bi-allelic loss-of-function variants in PPFIBP1 as a cause of an autosomal recessive severe neurodevelopmental disorder with early-onset epilepsy, microcephaly, and periventricular calcifications

    Neuromyelitis optica spectrum disorders in children and adolescents.

    Get PDF
    Neuromyelitis optica (NMO) is a severe autoimmune disease of the CNS characterized by recurrent inflammatory events primarily involving the optic nerves and spinal cord. NMO is infrequent in children, but early recognition is important to start adequate treatment. In this article, we review the evolving diagnostic criteria of NMO and provide an update on the clinical and neuroimaging spectrum of the disorder in pediatric patients, including current knowledge on immunopathogenesis and treatment recommendations for children with NMO.journal articlereview2016 Aug 30importe

    Sleep spindles across youth affected by schizophrenia or anti-N-methyl-D-aspartate-receptor encephalitis

    Full text link
    BackgroundSleep disturbances are intertwined with the progression and pathophysiology of psychotic symptoms in schizophrenia. Reductions in sleep spindles, a major electrophysiological oscillation during non-rapid eye movement sleep, have been identified in patients with schizophrenia as a potential biomarker representing the impaired integrity of the thalamocortical network. Altered glutamatergic neurotransmission within this network via a hypofunction of the N-methyl-D-aspartate receptor (NMDAR) is one of the hypotheses at the heart of schizophrenia. This pathomechanism and the symptomatology are shared by anti-NMDAR encephalitis (NMDARE), where antibodies specific to the NMDAR induce a reduction of functional NMDAR. However, sleep spindle parameters have yet to be investigated in NMDARE and a comparison of these rare patients with young individuals with schizophrenia and healthy controls (HC) is lacking. This study aims to assess and compare sleep spindles across young patients affected by Childhood-Onset Schizophrenia (COS), Early-Onset Schizophrenia, (EOS), or NMDARE and HC. Further, the potential relationship between sleep spindle parameters in COS and EOS and the duration of the disease is examined.MethodsSleep EEG data of patients with COS (N = 17), EOS (N = 11), NMDARE (N = 8) aged 7–21 years old, and age- and sex-matched HC (N = 36) were assessed in 17 (COS, EOS) or 5 (NMDARE) electrodes. Sleep spindle parameters (sleep spindle density, maximum amplitude, and sigma power) were analyzed.ResultsCentral sleep spindle density, maximum amplitude, and sigma power were reduced when comparing all patients with psychosis to all HC. Between patient group comparisons showed no differences in central spindle density but lower central maximum amplitude and sigma power in patients with COS compared to patients with EOS or NMDARE. Assessing the topography of spindle density, it was significantly reduced over 15/17 electrodes in COS, 3/17 in EOS, and 0/5 in NMDARE compared to HC. In the pooled sample of COS and EOS, a longer duration of illness was associated with lower central sigma power.ConclusionsPatients with COS demonstrated more pronounced impairments of sleep spindles compared to patients with EOS and NMDARE. In this sample, there is no strong evidence that changes in NMDAR activity are related to spindle deficits

    Complement activating antibodies to myelin oligodendrocyte glycoprotein in neuromyelitis optica and related disorders

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Serum autoantibodies against the water channel aquaporin-4 (AQP4) are important diagnostic biomarkers and pathogenic factors for neuromyelitis optica (NMO). However, AQP4-IgG are absent in 5-40% of all NMO patients and the target of the autoimmune response in these patients is unknown. Since recent studies indicate that autoimmune responses to myelin oligodendrocyte glycoprotein (MOG) can induce an NMO-like disease in experimental animal models, we speculate that MOG might be an autoantigen in AQP4-IgG seronegative NMO. Although high-titer autoantibodies to human native MOG were mainly detected in a subgroup of pediatric acute disseminated encephalomyelitis (ADEM) and multiple sclerosis (MS) patients, their role in NMO and High-risk NMO (HR-NMO; recurrent optic neuritis-rON or longitudinally extensive transverse myelitis-LETM) remains unresolved.</p> <p>Results</p> <p>We analyzed patients with definite NMO (n = 45), HR-NMO (n = 53), ADEM (n = 33), clinically isolated syndromes presenting with myelitis or optic neuritis (CIS, n = 32), MS (n = 71) and controls (n = 101; 24 other neurological diseases-OND, 27 systemic lupus erythematosus-SLE and 50 healthy subjects) for serum IgG to MOG and AQP4. Furthermore, we investigated whether these antibodies can mediate complement dependent cytotoxicity (CDC). AQP4-IgG was found in patients with NMO (n = 43, 96%), HR-NMO (n = 32, 60%) and in one CIS patient (3%), but was absent in ADEM, MS and controls. High-titer MOG-IgG was found in patients with ADEM (n = 14, 42%), NMO (n = 3, 7%), HR-NMO (n = 7, 13%, 5 rON and 2 LETM), CIS (n = 2, 6%), MS (n = 2, 3%) and controls (n = 3, 3%, two SLE and one OND). Two of the three MOG-IgG positive NMO patients and all seven MOG-IgG positive HR-NMO patients were negative for AQP4-IgG. Thus, MOG-IgG were found in both AQP4-IgG seronegative NMO patients and seven of 21 (33%) AQP4-IgG negative HR-NMO patients. Antibodies to MOG and AQP4 were predominantly of the IgG1 subtype, and were able to mediate CDC at high-titer levels.</p> <p>Conclusions</p> <p>We could show for the first time that a subset of AQP4-IgG seronegative patients with NMO and HR-NMO exhibit a MOG-IgG mediated immune response, whereas MOG is not a target antigen in cases with an AQP4-directed humoral immune response.</p

    Current international trends in the treatment of multiple sclerosis in children:impact of the COVID-19 pandemic

    Get PDF
    Background: Only recently has the first disease-modifying therapy been approved for children with multiple sclerosis (MS) and practice patterns including substantial off-label use have evolved. Understanding attitudes towards treatment of paediatric MS and whether this has changed due to the ongoing COVID-19 pandemic is vital to guide future therapeutic trials and for developing guidelines that reflect practice. Methods: We performed an online survey within the International Paediatric Multiple Sclerosis Study Group between July and September 2020. The survey was sent to 130 members from 25 countries and consisted of five sections: demographic data, treatment, disease modifying therapies and COVID-19, outcome and three patient cases. Results: The survey was completed by 66 members (51%), both paediatric neurologists and adult neurologists. Fingolimod and β-interferons were the most frequently used disease-modifying therapies, especially among paediatric neurologists. Almost a third (31%) of respondents had altered their prescribing practice due to COVID-19, in particular at the beginning of the pandemic. Conclusions: The survey results indicate a tendency of moving from the traditional escalation therapy starting with injectables towards an early start with newer, highly effective disease modifying therapies. The COVID-19 pandemic only slightly affected prescribing patterns and treatment choices in paediatric MS

    Age-dependent favorable visual recovery despite significant retinal atrophy in pediatric MOGAD: how much retina do you really need to see well?

    Get PDF
    BACKGROUND To investigate age-related severity, patterns of retinal structural damage, and functional visual recovery in pediatric and adult cohorts of myelin oligodendrocyte glycoprotein antibody-associated disease (MOGAD) optic neuritis (ON). METHODS All MOGAD patients from the 5 participating centers were included. Patients with initial manifestation 0.5) visual impairment. Independent of retinal atrophy, age at ON onset significantly correlated with visual outcome. CONCLUSION Pediatric MOGAD ON showed better visual recovery than adult MOGAD ON despite profound and almost identical neuroaxonal retinal atrophy. Age-related cortical neuroplasticity may account for the substantial discrepancy between structural changes and functional outcomes

    Differential binding of autoantibodies to MOG isoforms in inflammatory demyelinating diseases

    Get PDF
    Objective: To analyze serum immunoglobulin G (IgG) antibodies to major isoforms of myelin oligodendrocyte glycoprotein (MOG-alpha 1-3 and beta 1-3) in patients with inflammatory demyelinating diseases. Methods: Retrospective case-control study using 378 serum samples from patients with multiple sclerosis (MS), patients with non-MS demyelinating disease, and healthy controls with MOG alpha-1-IgG positive (n = 202) or negative serostatus (n = 176). Samples were analyzed for their reactivity to human, mouse, and rat MOG isoforms with and without mutations in the extracellular MOG Ig domain (MOG-ecIgD), soluble MOG-ecIgD, and myelin from multiple species using live cell-based, tissue immunofluorescence assays and ELISA. Results: The strongest IgG reactivities were directed against the longest MOG isoforms alpha-1 (the currently used standard test for MOG-IgG) and beta-1, whereas the other isoforms were less frequently recognized. Using principal component analysis, we identified 3 different binding patterns associated with non-MS disease: (1) isolated reactivity to MOG-alpha-1/beta-1 (n = 73), (2) binding to MOG-alpha-1/beta-1 and at least one other alpha, but no beta isoform (n = 64), and (3) reactivity to all 6 MOG isoforms (n = 65). The remaining samples were negative (n = 176) for MOG-IgG. These MOG isoform binding patterns were associated with a non-MS demyelinating disease, but there were no differences in clinical phenotypes or disease course. The 3 MOG isoform patterns had distinct immunologic characteristics such as differential binding to soluble MOG-ecIgD, sensitivity to MOG mutations, and binding to human MOG in ELISA. Conclusions: The novel finding of differential MOG isoform binding patterns could inform future studies on the refinement of MOG-IgG assays and the pathophysiologic role of MOG-IgG
    corecore