8 research outputs found
Global stability of an SIS epidemic model with a finite infectious period
Assuming a general distribution for the sojourn time in the in- fectious
class, we consider an SIS type epidemic model formulated as a scalar integral
equation. We prove that the endemic equilibrium of the model is globally
asymptotically stable whenever it exists, solving the conjecture of Hethcote
and van den Driessche (1995) for the case of nonfatal diseases
Dynamics of an SIS Model on Homogeneous Networks with Delayed Reduction of Contact Numbers
During infectious disease outbreaks, people may modify their contact patterns after realizing the risk of infection. In this paper, we assume that individuals make the decision of reducing a fraction of their links when the density of infected individuals exceeds some threshold, but the decision is made with some delay. Under such assumption, we study the dynamics of a delayed SIS epidemic model on homogenous networks. By theoretical analysis and simulations, we conclude that the density of infected individuals periodically oscillate for some range of the basic reproduction number. Our results indicate that information delays can have important effects on the dynamics of infectious diseases
Emergent Semiclassical Time in Quantum Gravity. I. Mechanical Models
Strategies intended to resolve the problem of time in quantum gravity by
means of emergent or hidden timefunctions are considered in the arena of
relational particle toy models. In situations with `heavy' and `light' degrees
of freedom, two notions of emergent semiclassical WKB time emerge; these are
furthermore equivalent to two notions of emergent classical
`Leibniz--Mach--Barbour' time. I futhermore study the semiclassical approach,
in a geometric phase formalism, extended to include linear constraints, and
with particular care to make explicit those approximations and assumptions
used. I propose a new iterative scheme for this in the cosmologically-motivated
case with one heavy degree of freedom. I find that the usual semiclassical
quantum cosmology emergence of time comes hand in hand with the emergence of
other qualitatively significant terms, including back-reactions on the heavy
subsystem and second time derivatives. I illustrate my analysis by taking it
further for relational particle models with linearly-coupled harmonic
oscillator potentials. As these examples are exactly soluble by means outside
the semiclassical approach, they are additionally useful for testing the
justifiability of some of the approximations and assumptions habitually made in
the semiclassical approach to quantum cosmology. Finally, I contrast the
emergent semiclassical timefunction with its hidden dilational Euler time
counterpart.Comment: References Update
Relational Particle Models. II. Use as toy models for quantum geometrodynamics
Relational particle models are employed as toy models for the study of the
Problem of Time in quantum geometrodynamics. These models' analogue of the thin
sandwich is resolved. It is argued that the relative configuration space and
shape space of these models are close analogues from various perspectives of
superspace and conformal superspace respectively. The geometry of these spaces
and quantization thereupon is presented. A quantity that is frozen in the scale
invariant relational particle model is demonstrated to be an internal time in a
certain portion of the relational particle reformulation of Newtonian
mechanics. The semiclassical approach for these models is studied as an
emergent time resolution for these models, as are consistent records
approaches.Comment: Replaced with published version. Minor changes only; 1 reference
correcte