1,511 research outputs found
Twisted Eguchi-Kawai Reduced Chiral Models
We study the twisted Eguchi-Kawai (TEK) reduction procedure for large-N
unitary matrix lattice models. In particular, we consider the case of
two-dimensional principal chiral models, and use numerical Monte Carlo (MC)
simulations to check the conjectured equivalence of TEK reduced model and
standard lattice model in the large-N limit. The MC results are compared with
the large-N limit of lattice principal chiral models to verify the supposed
equivalence. The consistency of the TEK reduction procedure is verified in the
strong-coupling region, i.e. for where is the
location of the large-N phase transition. On the other hand, in the
weak-coupling regime , relevant for the continuum limit, our MC
results do not support the equivalence of the large-N limits of the lattice
chiral model and the corresponding TEK reduction. The implications for the
correspondence between TEK model and noncommutative field theory are also
discussed.Comment: 16 page
From finite geometry exact quantities to (elliptic) scattering amplitudes for spin chains: the 1/2-XYZ
Initially, we derive a nonlinear integral equation for the vacuum counting
function of the spin 1/2-XYZ chain in the {\it disordered regime}, thus
paralleling similar results by Kl\"umper \cite{KLU}, achieved through a
different technique in the {\it antiferroelectric regime}. In terms of the
counting function we obtain the usual physical quantities, like the energy and
the transfer matrix (eigenvalues). Then, we introduce a double scaling limit
which appears to describe the sine-Gordon theory on cylindrical geometry, so
generalising famous results in the plane by Luther \cite{LUT} and Johnson et
al. \cite{JKM}. Furthermore, after extending the nonlinear integral equation to
excitations, we derive scattering amplitudes involving solitons/antisolitons
first, and bound states later. The latter case comes out as manifestly related
to the Deformed Virasoro Algebra of Shiraishi et al. \cite{SKAO}. Although this
nonlinear integral equations framework was contrived to deal with finite
geometries, we prove it to be effective for discovering or rediscovering
S-matrices. As a particular example, we prove that this unique model furnishes
explicitly two S-matrices, proposed respectively by Zamolodchikov \cite{ZAMe}
and Lukyanov-Mussardo-Penati \cite{LUK, MP} as plausible scattering description
of unknown integrable field theories.Comment: Article, 41 pages, Late
Jet color chemistry and anomalous baryon production in -collisions
We study anomalous high- baryon production in -collisions due to
formation of the two parton collinear system in the anti-sextet color
state for quark jets and system in the decuplet/anti-decuplet color states
for gluon jets. Fragmentation of these states, which are absent for
-collisions, after escaping from the quark-gluon plasma leads to baryon
production. Our qualitative estimates show that this mechanism can be
potentially important at RHIC and LHC energies.Comment: 20 pages, 4 figures, Eur.Phys.J. versio
Exact conserved quantities on the cylinder II: off-critical case
With the aim of exploring a massive model corresponding to the perturbation
of the conformal model [hep-th/0211094] the nonlinear integral equation for a
quantum system consisting of left and right KdV equations coupled on the
cylinder is derived from an integrable lattice field theory. The eigenvalues of
the energy and of the transfer matrix (and of all the other local integrals of
motion) are expressed in terms of the corresponding solutions of the nonlinear
integral equation. The analytic and asymptotic behaviours of the transfer
matrix are studied and given.Comment: enlarged version before sending to jurnal, second part of
hep-th/021109
Exact conserved quantities on the cylinder I: conformal case
The nonlinear integral equations describing the spectra of the left and right
(continuous) quantum KdV equations on the cylinder are derived from integrable
lattice field theories, which turn out to allow the Bethe Ansatz equations of a
twisted ``spin -1/2'' chain. A very useful mapping to the more common nonlinear
integral equation of the twisted continuous spin chain is found. The
diagonalization of the transfer matrix is performed. The vacua sector is
analysed in detail detecting the primary states of the minimal conformal models
and giving integral expressions for the eigenvalues of the transfer matrix.
Contact with the seminal papers \cite{BLZ, BLZ2} by Bazhanov, Lukyanov and
Zamolodchikov is realised. General expressions for the eigenvalues of the
infinite-dimensional abelian algebra of local integrals of motion are given and
explicitly calculated at the free fermion point.Comment: Journal version: references added and minor corrections performe
Parton distributions in the virtual photon target up to NNLO in QCD
Parton distributions in the virtual photon target are investigated in
perturbative QCD up to the next-to-next-to-leading order (NNLO). In the case
, where () is the mass squared of the
probe (target) photon, parton distributions can be predicted completely up to
the NNLO, but they are factorisation-scheme-dependent. We analyse parton
distributions in two different factorisation schemes, namely and
schemes, and discuss their scheme dependence. We show that
the factorisation-scheme dependence is characterised by the large-
behaviours of quark distributions. Gluon distribution is predicted to be very
small in absolute value except in the small- region.Comment: 28 pages, 5 figures, version to appear in Eur. Phys. J.
Spin-based all-optical quantum computation with quantum dots: understanding and suppressing decoherence
We present an all-optical implementation of quantum computation using
semiconductor quantum dots. Quantum memory is represented by the spin of an
excess electron stored in each dot. Two-qubit gates are realized by switching
on trion-trion interactions between different dots. State selectivity is
achieved via conditional laser excitation exploiting Pauli exclusion principle.
Read-out is performed via a quantum-jump technique. We analyze the effect on
our scheme's performance of the main imperfections present in real quantum
dots: exciton decay, hole mixing and phonon decoherence. We introduce an
adiabatic gate procedure that allows one to circumvent these effects, and
evaluate quantitatively its fidelity
Dust Devil Tracks
Dust devils that leave dark- or light-toned tracks are common on Mars and they can also be found on the Earth’s surface. Dust devil tracks (hereinafter DDTs) are ephemeral surface features with mostly sub-annual lifetimes. Regarding their size, DDT widths can range between ∼1 m and ∼1 km, depending on the diameter of dust devil that created the track, and DDT lengths range from a few tens of meters to several kilometers, limited by the duration and horizontal ground speed of dust devils. DDTs can be classified into three main types based on their morphology and albedo in contrast to their surroundings; all are found on both planets: (a) dark continuous DDTs, (b) dark cycloidal DDTs, and (c) bright DDTs. Dark continuous DDTs are the most common type on Mars. They are characterized by their relatively homogenous and continuous low albedo surface tracks. Based on terrestrial and martian in situ studies, these DDTs most likely form when surficial dust layers are removed to expose larger-grained substrate material (coarse sands of ≥500 μm in diameter). The exposure of larger-grained materials changes the photometric properties of the surface; hence leading to lower albedo tracks because grain size is photometrically inversely proportional to the surface reflectance. However, although not observed so far, compositional differences (i.e., color differences) might also lead to albedo contrasts when dust is removed to expose substrate materials with mineralogical differences. For dark continuous DDTs, albedo drop measurements are around 2.5 % in the wavelength range of 550–850 nm on Mars and around 0.5 % in the wavelength range from 300–1100 nm on Earth. The removal of an equivalent layer thickness around 1 μm is sufficient for the formation of visible dark continuous DDTs on Mars and Earth. The next type of DDTs, dark cycloidal DDTs, are characterized by their low albedo pattern of overlapping scallops. Terrestrial in situ studies imply that they are formed when sand-sized material that is eroded from the outer vortex area of a dust devil is redeposited in annular patterns in the central vortex region. This type of DDT can also be found in on Mars in orbital image data, and although in situ studies are lacking, terrestrial analog studies, laboratory work, and numerical modeling suggest they have the same formation mechanism as those on Earth. Finally, bright DDTs are characterized by their continuous track pattern and high albedo compared to their undisturbed surroundings. They are found on both planets, but to date they have only been analyzed in situ on Earth. Here, the destruction of aggregates of dust, silt and sand by dust devils leads to smooth surfaces in contrast to the undisturbed rough surfaces surrounding the track. The resulting change in photometric properties occurs because the smoother surfaces have a higher reflectance compared to the surrounding rough surface, leading to bright DDTs. On Mars, the destruction of surficial dust-aggregates may also lead to bright DDTs. However, higher reflective surfaces may be produced by other formation mechanisms, such as dust compaction by passing dust devils, as this may also cause changes in photometric properties. On Mars, DDTs in general are found at all elevations and on a global scale, except on the permanent polar caps. DDT maximum areal densities occur during spring and summer in both hemispheres produced by an increase in dust devil activity caused by maximum insolation. Regionally, dust devil densities vary spatially likely controlled by changes in dust cover thicknesses and substrate materials. This variability makes it difficult to infer dust devil activity from DDT frequencies. Furthermore, only a fraction of dust devils leave tracks. However, DDTs can be used as proxies for dust devil lifetimes and wind directions and speeds, and they can also be used to predict lander or rover solar panel clearing events. Overall, the high DDT frequency in many areas on Mars leads to drastic albedo changes that affect large-scale weather patterns
A measurement of the tau mass and the first CPT test with tau leptons
We measure the mass of the tau lepton to be 1775.1+-1.6(stat)+-1.0(syst.) MeV
using tau pairs from Z0 decays. To test CPT invariance we compare the masses of
the positively and negatively charged tau leptons. The relative mass difference
is found to be smaller than 3.0 10^-3 at the 90% confidence level.Comment: 10 pages, 4 figures, Submitted to Phys. Letts.
Measurement of the Strong Coupling alpha s from Four-Jet Observables in e+e- Annihilation
Data from e+e- annihilation into hadrons at centre-of-mass energies between
91 GeV and 209 GeV collected with the OPAL detector at LEP, are used to study
the four-jet rate as a function of the Durham algorithm resolution parameter
ycut. The four-jet rate is compared to next-to-leading order calculations that
include the resummation of large logarithms. The strong coupling measured from
the four-jet rate is alphas(Mz0)=
0.1182+-0.0003(stat.)+-0.0015(exp.)+-0.0011(had.)+-0.0012(scale)+-0.0013(mass)
in agreement with the world average. Next-to-leading order fits to the
D-parameter and thrust minor event-shape observables are also performed for the
first time. We find consistent results, but with significantly larger
theoretical uncertainties.Comment: 25 pages, 15 figures, Submitted to Euro. Phys. J.
- …