1,511 research outputs found

    Twisted Eguchi-Kawai Reduced Chiral Models

    Full text link
    We study the twisted Eguchi-Kawai (TEK) reduction procedure for large-N unitary matrix lattice models. In particular, we consider the case of two-dimensional principal chiral models, and use numerical Monte Carlo (MC) simulations to check the conjectured equivalence of TEK reduced model and standard lattice model in the large-N limit. The MC results are compared with the large-N limit of lattice principal chiral models to verify the supposed equivalence. The consistency of the TEK reduction procedure is verified in the strong-coupling region, i.e. for β<βc\beta<\beta_c where βc\beta_c is the location of the large-N phase transition. On the other hand, in the weak-coupling regime β>βc\beta>\beta_c, relevant for the continuum limit, our MC results do not support the equivalence of the large-N limits of the lattice chiral model and the corresponding TEK reduction. The implications for the correspondence between TEK model and noncommutative field theory are also discussed.Comment: 16 page

    From finite geometry exact quantities to (elliptic) scattering amplitudes for spin chains: the 1/2-XYZ

    Full text link
    Initially, we derive a nonlinear integral equation for the vacuum counting function of the spin 1/2-XYZ chain in the {\it disordered regime}, thus paralleling similar results by Kl\"umper \cite{KLU}, achieved through a different technique in the {\it antiferroelectric regime}. In terms of the counting function we obtain the usual physical quantities, like the energy and the transfer matrix (eigenvalues). Then, we introduce a double scaling limit which appears to describe the sine-Gordon theory on cylindrical geometry, so generalising famous results in the plane by Luther \cite{LUT} and Johnson et al. \cite{JKM}. Furthermore, after extending the nonlinear integral equation to excitations, we derive scattering amplitudes involving solitons/antisolitons first, and bound states later. The latter case comes out as manifestly related to the Deformed Virasoro Algebra of Shiraishi et al. \cite{SKAO}. Although this nonlinear integral equations framework was contrived to deal with finite geometries, we prove it to be effective for discovering or rediscovering S-matrices. As a particular example, we prove that this unique model furnishes explicitly two S-matrices, proposed respectively by Zamolodchikov \cite{ZAMe} and Lukyanov-Mussardo-Penati \cite{LUK, MP} as plausible scattering description of unknown integrable field theories.Comment: Article, 41 pages, Late

    Jet color chemistry and anomalous baryon production in AAAA-collisions

    Full text link
    We study anomalous high-pTp_T baryon production in AAAA-collisions due to formation of the two parton collinear gqgq system in the anti-sextet color state for quark jets and gggg system in the decuplet/anti-decuplet color states for gluon jets. Fragmentation of these states, which are absent for NNNN-collisions, after escaping from the quark-gluon plasma leads to baryon production. Our qualitative estimates show that this mechanism can be potentially important at RHIC and LHC energies.Comment: 20 pages, 4 figures, Eur.Phys.J. versio

    Exact conserved quantities on the cylinder II: off-critical case

    Get PDF
    With the aim of exploring a massive model corresponding to the perturbation of the conformal model [hep-th/0211094] the nonlinear integral equation for a quantum system consisting of left and right KdV equations coupled on the cylinder is derived from an integrable lattice field theory. The eigenvalues of the energy and of the transfer matrix (and of all the other local integrals of motion) are expressed in terms of the corresponding solutions of the nonlinear integral equation. The analytic and asymptotic behaviours of the transfer matrix are studied and given.Comment: enlarged version before sending to jurnal, second part of hep-th/021109

    Exact conserved quantities on the cylinder I: conformal case

    Full text link
    The nonlinear integral equations describing the spectra of the left and right (continuous) quantum KdV equations on the cylinder are derived from integrable lattice field theories, which turn out to allow the Bethe Ansatz equations of a twisted ``spin -1/2'' chain. A very useful mapping to the more common nonlinear integral equation of the twisted continuous spin +1/2+1/2 chain is found. The diagonalization of the transfer matrix is performed. The vacua sector is analysed in detail detecting the primary states of the minimal conformal models and giving integral expressions for the eigenvalues of the transfer matrix. Contact with the seminal papers \cite{BLZ, BLZ2} by Bazhanov, Lukyanov and Zamolodchikov is realised. General expressions for the eigenvalues of the infinite-dimensional abelian algebra of local integrals of motion are given and explicitly calculated at the free fermion point.Comment: Journal version: references added and minor corrections performe

    Parton distributions in the virtual photon target up to NNLO in QCD

    Full text link
    Parton distributions in the virtual photon target are investigated in perturbative QCD up to the next-to-next-to-leading order (NNLO). In the case Λ2P2Q2\Lambda^2 \ll P^2 \ll Q^2, where Q2-Q^2 (P2-P^2) is the mass squared of the probe (target) photon, parton distributions can be predicted completely up to the NNLO, but they are factorisation-scheme-dependent. We analyse parton distributions in two different factorisation schemes, namely MSˉ\bar{\rm MS} and DISγ{\rm DIS}_{\gamma} schemes, and discuss their scheme dependence. We show that the factorisation-scheme dependence is characterised by the large-xx behaviours of quark distributions. Gluon distribution is predicted to be very small in absolute value except in the small-xx region.Comment: 28 pages, 5 figures, version to appear in Eur. Phys. J.

    Spin-based all-optical quantum computation with quantum dots: understanding and suppressing decoherence

    Full text link
    We present an all-optical implementation of quantum computation using semiconductor quantum dots. Quantum memory is represented by the spin of an excess electron stored in each dot. Two-qubit gates are realized by switching on trion-trion interactions between different dots. State selectivity is achieved via conditional laser excitation exploiting Pauli exclusion principle. Read-out is performed via a quantum-jump technique. We analyze the effect on our scheme's performance of the main imperfections present in real quantum dots: exciton decay, hole mixing and phonon decoherence. We introduce an adiabatic gate procedure that allows one to circumvent these effects, and evaluate quantitatively its fidelity

    Dust Devil Tracks

    Get PDF
    Dust devils that leave dark- or light-toned tracks are common on Mars and they can also be found on the Earth’s surface. Dust devil tracks (hereinafter DDTs) are ephemeral surface features with mostly sub-annual lifetimes. Regarding their size, DDT widths can range between ∼1 m and ∼1 km, depending on the diameter of dust devil that created the track, and DDT lengths range from a few tens of meters to several kilometers, limited by the duration and horizontal ground speed of dust devils. DDTs can be classified into three main types based on their morphology and albedo in contrast to their surroundings; all are found on both planets: (a) dark continuous DDTs, (b) dark cycloidal DDTs, and (c) bright DDTs. Dark continuous DDTs are the most common type on Mars. They are characterized by their relatively homogenous and continuous low albedo surface tracks. Based on terrestrial and martian in situ studies, these DDTs most likely form when surficial dust layers are removed to expose larger-grained substrate material (coarse sands of ≥500 μm in diameter). The exposure of larger-grained materials changes the photometric properties of the surface; hence leading to lower albedo tracks because grain size is photometrically inversely proportional to the surface reflectance. However, although not observed so far, compositional differences (i.e., color differences) might also lead to albedo contrasts when dust is removed to expose substrate materials with mineralogical differences. For dark continuous DDTs, albedo drop measurements are around 2.5 % in the wavelength range of 550–850 nm on Mars and around 0.5 % in the wavelength range from 300–1100 nm on Earth. The removal of an equivalent layer thickness around 1 μm is sufficient for the formation of visible dark continuous DDTs on Mars and Earth. The next type of DDTs, dark cycloidal DDTs, are characterized by their low albedo pattern of overlapping scallops. Terrestrial in situ studies imply that they are formed when sand-sized material that is eroded from the outer vortex area of a dust devil is redeposited in annular patterns in the central vortex region. This type of DDT can also be found in on Mars in orbital image data, and although in situ studies are lacking, terrestrial analog studies, laboratory work, and numerical modeling suggest they have the same formation mechanism as those on Earth. Finally, bright DDTs are characterized by their continuous track pattern and high albedo compared to their undisturbed surroundings. They are found on both planets, but to date they have only been analyzed in situ on Earth. Here, the destruction of aggregates of dust, silt and sand by dust devils leads to smooth surfaces in contrast to the undisturbed rough surfaces surrounding the track. The resulting change in photometric properties occurs because the smoother surfaces have a higher reflectance compared to the surrounding rough surface, leading to bright DDTs. On Mars, the destruction of surficial dust-aggregates may also lead to bright DDTs. However, higher reflective surfaces may be produced by other formation mechanisms, such as dust compaction by passing dust devils, as this may also cause changes in photometric properties. On Mars, DDTs in general are found at all elevations and on a global scale, except on the permanent polar caps. DDT maximum areal densities occur during spring and summer in both hemispheres produced by an increase in dust devil activity caused by maximum insolation. Regionally, dust devil densities vary spatially likely controlled by changes in dust cover thicknesses and substrate materials. This variability makes it difficult to infer dust devil activity from DDT frequencies. Furthermore, only a fraction of dust devils leave tracks. However, DDTs can be used as proxies for dust devil lifetimes and wind directions and speeds, and they can also be used to predict lander or rover solar panel clearing events. Overall, the high DDT frequency in many areas on Mars leads to drastic albedo changes that affect large-scale weather patterns

    A measurement of the tau mass and the first CPT test with tau leptons

    Full text link
    We measure the mass of the tau lepton to be 1775.1+-1.6(stat)+-1.0(syst.) MeV using tau pairs from Z0 decays. To test CPT invariance we compare the masses of the positively and negatively charged tau leptons. The relative mass difference is found to be smaller than 3.0 10^-3 at the 90% confidence level.Comment: 10 pages, 4 figures, Submitted to Phys. Letts.

    Measurement of the Strong Coupling alpha s from Four-Jet Observables in e+e- Annihilation

    Full text link
    Data from e+e- annihilation into hadrons at centre-of-mass energies between 91 GeV and 209 GeV collected with the OPAL detector at LEP, are used to study the four-jet rate as a function of the Durham algorithm resolution parameter ycut. The four-jet rate is compared to next-to-leading order calculations that include the resummation of large logarithms. The strong coupling measured from the four-jet rate is alphas(Mz0)= 0.1182+-0.0003(stat.)+-0.0015(exp.)+-0.0011(had.)+-0.0012(scale)+-0.0013(mass) in agreement with the world average. Next-to-leading order fits to the D-parameter and thrust minor event-shape observables are also performed for the first time. We find consistent results, but with significantly larger theoretical uncertainties.Comment: 25 pages, 15 figures, Submitted to Euro. Phys. J.
    corecore