Initially, we derive a nonlinear integral equation for the vacuum counting
function of the spin 1/2-XYZ chain in the {\it disordered regime}, thus
paralleling similar results by Kl\"umper \cite{KLU}, achieved through a
different technique in the {\it antiferroelectric regime}. In terms of the
counting function we obtain the usual physical quantities, like the energy and
the transfer matrix (eigenvalues). Then, we introduce a double scaling limit
which appears to describe the sine-Gordon theory on cylindrical geometry, so
generalising famous results in the plane by Luther \cite{LUT} and Johnson et
al. \cite{JKM}. Furthermore, after extending the nonlinear integral equation to
excitations, we derive scattering amplitudes involving solitons/antisolitons
first, and bound states later. The latter case comes out as manifestly related
to the Deformed Virasoro Algebra of Shiraishi et al. \cite{SKAO}. Although this
nonlinear integral equations framework was contrived to deal with finite
geometries, we prove it to be effective for discovering or rediscovering
S-matrices. As a particular example, we prove that this unique model furnishes
explicitly two S-matrices, proposed respectively by Zamolodchikov \cite{ZAMe}
and Lukyanov-Mussardo-Penati \cite{LUK, MP} as plausible scattering description
of unknown integrable field theories.Comment: Article, 41 pages, Late