191 research outputs found

    Alongshore variability in wave energy transfer to coastal cliffs

    Get PDF
    The alongshore distribution of wave energy is believed to be an important control on the spatial variability of coastal erosion. There is, however, a lack of field data quantifying the alongshore variability in wave energy on rock coasts, whereby the relative control of coastline geometry versus foreshore characteristics on wave energy delivery remains unclear. A number of studies have identified high-frequency cliff-top ground shaking to be generated by wave impacts at the cliff toe during high tides (HT). To capture the variability of wave-cliff impact energy along-coast, we installed an array of cliff-top seismometers along a 1 km stretch of coastline in North Yorkshire, UK. Our aim is to constrain how wave energy transfer to the cliff toe varies, and to examine the relative energy transfer around typical coastline features, including a bay and headlands. Whilst the greatest HT ground motion energy is recorded at a headland and the lowest at the centre of the bay (5% of that observed at the headland), we identify no systematic alongshore variation in the HT ground motion energy that can be related to coastline morphology. We also note considerable variation between features of similar form: the total HT ground motion energy at one headland is only 49% of the next headland 1 km alongshore. Between neighbouring sites within the bay, separated by only 100 m, we observe up to an order of magnitude difference in ground motion energy transfer. Our results demonstrate the importance of the foreshore in driving the variations in energy delivery that we observe. Local alterations in water depth and foreshore topography control the alongshore distribution of wave energy available to generate cliff HT ground motions. Importantly, this apparently local effect overrides the influence of macroscale coastal planform morphology, which has previously been assumed to be the dominant control. The results show that foreshore characteristics that hold influence over wave energy transfer vary significantly over short (~100 m) distances, and so we expect erosion controlled by wave impacts to vary over similar scales

    Are microseismic ground displacements a significant geomorphic agent?

    Get PDF
    This paper considers the role that microseismic ground displacements may play in fracturing rock via cyclic loading and subcritical crack growth. Using a coastal rock cliff as a case study, we firstly undertake a literature review to define the spatial locations that may be prone to microseismic damage. It is suggested that microseismic weakening of rock can only occur in ‘damage accumulation zones’ of limited spatial extent. Stress concentrations resulting from cliff height, slope angle and surface morphology may nucleate and propagate a sufficiently dense population of microcracks that can then be exploited by microseismic cyclic loading. We subsequently examine a 32-day microseismic dataset obtained from a coastal cliff-top location at Staithes, UK. The dataset demonstrates that microseismic ground displacements display low peak amplitudes that are punctuated by periods of greater displacement during storm conditions. Microseismic displacements generally display limited preferential directivity, though we observe rarely occurring sustained ground motions with a cliff-normal component during storm events. High magnitude displacements and infrequently experienced ground motion directions may be more damaging than the more frequently occurring, reduced magnitude displacements characteristic of periods of relative quiescence. As high magnitude, low frequency events exceed and then increase the damage threshold, these extremes may also render intervening, reduced magnitude microseismic displacements ineffective in terms of damage accumulation as a result of crack tip blunting and the generation of residual compressive stresses that close microcracks. We contend that damage resulting from microseismic ground motion may be episodic, rather than being continuous and in (quasi-)proportional and cumulative response to environmental forcing. A conceptual model is proposed that describes when and where microseismic ground motions can operate effectively. We hypothesise that there are significant spatial and temporal limitations on effective microseismic damage accumulation, such that the net efficacy of microseismic ground motions in preparing rock for fracture, and hence in enhancing erosion, may be considerably lower than previously suggested in locations where high magnitude displacements punctuate ‘standard’ displacement conditions. Determining and measuring the exact effects of microseismic ground displacement on damage accumulation and as a trigger to macro-scale fracture in the field is not currently possible, though our model remains consistent with field observations and conceptual models of controls on rockfall activity

    Quantitative reconstruction of late Holocene surface evolution on an alpine debris-flow fan

    Get PDF
    Debris-flow fans form a ubiquitous record of past debris-flow activity in mountainous areas, and may be useful for inferring past flow characteristics and consequent future hazard. Extracting information on past debris flows from fan records, however, requires an understanding of debris-flow deposition and fan surface evolution; field-scale studies of these processes have been very limited. In this paper, we document the patterns and timing of debris-flow deposition on the surface of the large and exceptionally active Illgraben fan in southwestern Switzerland. We use terrain analysis, radiocarbon dating of sediment fill in the Illgraben catchment, and cosmogenic 10Be and 36Cl exposure dating of debris-flow deposits on the fan to constrain the temporal evolution of the sediment routing system in the catchment and on the fan during the past 3200 years. We show that the fan surface preserves a set of debris-flow lobes that were predominantly deposited after the occurrence of a large rock avalanche near the fan apex at about 3200 years ago. This rock avalanche shifted the apex of the fan and impounded sediment within the Illgraben catchment. Subsequent evolution of the fan surface has been governed by both lateral and radial shifts in the active depositional lobe, revealed by the cosmogenic radionuclide dates and by cross-cutting geometrical relationships on the fan surface. This pattern of frequent avulsion and fan surface occupation provides field-scale evidence of the type of large-scale compensatory behavior observed in experimental sediment routing systems

    Search for the Zγ decay mode of new high-mass resonances in pp collisions at √s = 13 TeV with the ATLAS detector

    Get PDF
    This letter presents a search for narrow, high-mass resonances in the Zγ final state with the Z boson decaying into a pair of electrons or muons. The √s = 13 TeV pp collision data were recorded by the ATLAS detector at the CERN Large Hadron Collider and have an integrated luminosity of 140 fb−1. The data are found to be in agreement with the Standard Model background expectation. Upper limits are set on the resonance production cross section times the decay branching ratio into Zγ. For spin-0 resonances produced via gluon–gluon fusion, the observed limits at 95% confidence level vary between 65.5 fb and 0.6 fb, while for spin-2 resonances produced via gluon–gluon fusion (or quark–antiquark initial states) limits vary between 77.4 (76.1) fb and 0.6 (0.5) fb, for the mass range from 220 GeV to 3400 GeV

    The ATLAS trigger system for LHC Run 3 and trigger performance in 2022

    Get PDF
    The ATLAS trigger system is a crucial component of the ATLAS experiment at the LHC. It is responsible for selecting events in line with the ATLAS physics programme. This paper presents an overview of the changes to the trigger and data acquisition system during the second long shutdown of the LHC, and shows the performance of the trigger system and its components in the proton-proton collisions during the 2022 commissioning period as well as its expected performance in proton-proton and heavy-ion collisions for the remainder of the third LHC data-taking period (2022–2025)

    Search for excited τ-leptons and leptoquarks in the final state with τ-leptons and jets in pp collisions at s√ = 13 TeV with the ATLAS detector

    Get PDF
    A search is reported for excited τ-leptons and leptoquarks in events with two hadronically decaying τ-leptons and two or more jets. The search uses proton-proton (pp) collision data at s√ = 13 TeV recorded by the ATLAS experiment during the Run 2 of the Large Hadron Collider in 2015–2018. The total integrated luminosity is 139 fb−1. The excited τ-lepton is assumed to be produced and to decay via a four-fermion contact interaction into an ordinary τ-lepton and a quark-antiquark pair. The leptoquarks are assumed to be produced in pairs via the strong interaction, and each leptoquark is assumed to couple to a charm or lighter quark and a τ-lepton. No excess over the background prediction is observed. Excited τ-leptons with masses below 2.8 TeV are excluded at 95% CL in scenarios with the contact interaction scale Λ set to 10 TeV. At the extreme limit of model validity where Λ is set equal to the excited τ-lepton mass, excited τ-leptons with masses below 4.6 TeV are excluded. Leptoquarks with masses below 1.3 TeV are excluded at 95% CL if their branching ratio to a charm quark and a τ-lepton equals 1. The analysis does not exploit flavour-tagging in the signal region

    Measurement of the cross-sections of the electroweak and total production of a Zγ pair in association with two jets in pp collisions at √s = 13 TeV with the ATLAS detector

    Get PDF
    This Letter presents the measurement of the fiducial and differential cross-sections of the electroweak production of a Zγ pair in association with two jets. The analysis uses 140 fb−1 of LHC proton–proton collision data taken at √s = 13 TeV recorded by the ATLAS detector during the years 2015–2018. Events with a Z boson candidate decaying into either an e+e− or μ+μ− pair, a photon and two jets are selected. The electroweak component is extracted by requiring a large dijet invariant mass and by using the information about the centrality of the system and is measured with an observed and expected significance well above five standard deviations. The fiducial pp → Zγ jj cross-section for the electroweak production is measured to be 3.6 ± 0.5 fb. The total fiducial cross-section that also includes contributions where the jets arise from strong interactions is measured to be 16.8+2.0 −1.8 fb. The results are consistent with the Standard Model predictions. Differential cross-sections are also measured using the same events and are compared with parton-shower Monte Carlo simulations. Good agreement is observed between data and predictions

    Search for heavy Higgs bosons with flavour-violating couplings in multi-lepton plus b-jets final states in pp collisions at 13 TeV with the ATLAS detector

    Get PDF
    A search for new heavy scalars with flavour-violating decays in final states with multiple leptons and b-tagged jets is presented. The results are interpreted in terms of a general two-Higgs-doublet model involving an additional scalar with couplings to the top-quark and the three up-type quarks (ρtt, ρtc, and ρtu). The targeted signals lead to final states with either a same-sign top-quark pair, three top-quarks, or four top-quarks. The search is based on a data sample of proton-proton collisions at √s = 13 TeV recorded with the ATLAS detector during Run 2 of the Large Hadron Collider, corresponding to an integrated luminosity of 139 fb−1. Events are categorised depending on the multiplicity of light charged leptons (electrons or muons), total lepton charge, and a deep-neural-network output to enhance the purity of each of the signals. Masses of an additional scalar boson mH between 200 − 630 GeV with couplings ρtt = 0.4, ρtc = 0.2, and ρtu = 0.2 are excluded at 95% confidence level. Additional interpretations are provided in models of R-parity violating supersymmetry, motivated by the recent flavour and (g − 2)μ anomalies

    Search for a new heavy scalar particle decaying into a Higgs boson and a new scalar singlet in final states with one or two light leptons and a pair of τ-leptons with the ATLAS detector

    Get PDF
    A search for a new heavy scalar particle X decaying into a Standard Model (SM) Higgs boson and a new singlet scalar particle S is presented. The search uses a proton-proton (pp) collision data sample with an integrated luminosity of 140 fb−1 recorded at a centre-of-mass energy of s√ = 13 TeV with the ATLAS detector at the Large Hadron Collider. The most sensitive mass parameter space is explored in X mass ranging from 500 to 1500 GeV, with the corresponding S mass in the range 200–500 GeV. The search selects events with two hadronically decaying τ-lepton candidates from H → τ+τ− decays and one or two light leptons (ℓ = e, μ) from S → VV (V = W, Z) decays while the remaining V boson decays hadronically or to neutrinos. A multivariate discriminant based on event kinematics is used to separate the signal from the background. No excess is observed beyond the expected SM background and 95% confidence level upper limits between 72 fb and 542 fb are derived on the cross-section σ(pp → X → SH) assuming the same SM-Higgs boson-like decay branching ratios for the S → VV decay. Upper limits on the visible cross-sections σ(pp → X → SH → WWττ) and σ(pp → X → SH → ZZττ) are also set in the ranges 3–26 fb and 6–33 fb, respectively

    Searches for exclusive Higgs boson decays into D⁎γ and Z boson decays into D0γ and Ks0γ in pp collisions at √s = 13 TeV with the ATLAS detector

    Get PDF
    Searches for exclusive decays of the Higgs boson into D⁎γ and of the Z boson into D0γ and Ks0γ can probe flavour-violating Higgs boson and Z boson couplings to light quarks. Searches for these decays are performed with a pp collision data sample corresponding to an integrated luminosity of 136.3 fb−1 collected at s=13TeV between 2016–2018 with the ATLAS detector at the CERN Large Hadron Collider. In the D⁎γ and D0γ channels, the observed (expected) 95% confidence-level upper limits on the respective branching fractions are B(H→D⁎γ)<1.0(1.2)×10−3, B(Z→D0γ)<4.0(3.4)×10−6, while the corresponding results in the Ks0γ channel are B(Z→Ks0γ)<3.1(3.0)×10−6
    corecore