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Abstract 8 

The alongshore distribution of wave energy is believed to be an important control on the 9 

spatial variability of coastal erosion. There is, however, a lack of field data quantifying the 10 

alongshore variability in wave energy on rock coasts, whereby the relative control of coastline 11 

geometry versus foreshore characteristics on wave energy delivery remains unclear. A number of 12 

studies have identified high-frequency cliff-top ground shaking to be generated by wave impacts at 13 

the cliff toe during high tides (HT). To capture the variability of wave-cliff impact energy along-coast, 14 

we installed an array of cliff-top seismometers along a 1 km stretch of coastline in North Yorkshire, 15 

UK. Our aim is to constrain how wave energy transfer to the cliff toe varies, and to examine the 16 

relative energy transfer around typical coastline features, including a bay and headlands. Whilst the 17 

greatest HT ground motion energy is recorded at a headland and the lowest at the centre of the bay 18 

(5% of that observed at the headland), we identify no systematic alongshore variation in the HT 19 

ground motion energy that can be related to coastline morphology. We also note considerable 20 

variation between features of similar form: the total HT ground motion energy at one headland is 21 

only 49% of the next headland 1 km alongshore. Between neighbouring sites within the bay, 22 

separated by only 100 m, we observe up to an order of magnitude difference in ground motion 23 

energy transfer. Our results demonstrate the importance of the foreshore in driving the variations in 24 

energy delivery that we observe. Local alterations in water depth and foreshore topography control 25 

the alongshore distribution of wave energy available to generate cliff HT ground motions. 26 

Importantly, this apparently local effect overrides the influence of macroscale coastal planform 27 

morphology, which has previously been assumed to be the dominant control. The results show that 28 

foreshore characteristics that hold influence over wave energy transfer vary significantly over short 29 

(~100 m) distances, and so we expect erosion controlled by wave impacts to vary over similar scales. 30 

 31 
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1 Introduction 35 

The distribution of wave energy along coastlines is an important control on the spatial 36 

variability of erosion (e.g. Sallenger et al., 2002; Murray and Ashton, 2013). Understanding the 37 

interactions between coastal morphology and variable incident hydrodynamics is crucial to 38 

improving our understanding of the implications of future climate change and the potential changes 39 

in coastal erosion (e.g. Bray and Hooke, 1997; Walkden and Hall, 2005; Dickson et al., 2007; 40 

Trenhaile, 2011). The focussing of wave energy and erosion around rock coastlines is controlled by 41 

prevailing wave and current directions (Carter et al., 1990), the availability and distribution of 42 

sediment (Sunamura, 1976; 1982; Limber and Murray, 2011), coastline planform and foreshore 43 

geometry (e.g. Klein and Menezes, 2001; Bowman et al., 2009; Hapke et al., 2009; Limber and 44 

Murray, 2011; Limber et al., 2014), coastal bathymetry (e.g. Trenhaile, 1987; Komar, 1997), and 45 

relative rock strength and the resistance to wave energy transfer (Sunamura, 1977; 1992). Studies 46 

that examine the role of coastline geometry in determining wave energy and erosion focussing are 47 

largely based on field monitoring on softer rock coasts where both sediments and beach material 48 

play a dominant role in controlling erosion (e.g. Klein and Menezes, 2001; Sallenger et al., 2002; 49 

Bowman et al., 2009), which is also observed in numerical modelling studies of coastal change (e.g. 50 

Limber and Murray, 2011; Limber et al., 2014). Few studies, however, have examined the alongshore 51 

variability of wave energy transfer and erosion on low-sediment, rock coasts.  52 

Recently a number of models have examined the long-term (≥ 1,000 year) evolution of rock 53 

coast planform geometry and the driving processes that control morphology (e.g. Limber and 54 

Murray, 2011; Limber et al., 2014). In general, alongshore variations in shallow water bathymetry 55 

result in nearshore refraction of waves: the convergence of waves focuses energy onto headlands, 56 

and divergence disperses energy as waves enter bays (e.g. Trenhaile, 1987; Komar, 1997). Wave 57 

energy transfer to the coastline is therefore determined by the degree to which the coastline 58 

projects seaward and is thus more exposed to incoming waves and greater energies (Carter et al., 59 

1990; Limber et al., 2014).  60 

A number of field-based studies have calculated the energy available to erode rock 61 

foreshores and cliffs (e.g. Stephenson and Kirk, 2000; Trenhaile and Kanyaya, 2007), and have 62 

measured the distribution of wave energy cross-shore and the influence of foreshore characteristics 63 

(Ogawa et al., 2011; 2016; Poate et al., 2016; Stephenson et al., 2017). Such studies have not 64 

considered alongshore variability in these foreshore characteristics, the resulting wave energy 65 

dissipation and transfer to the cliff. The relative importance of planform geometry versus foreshore 66 

characteristics in determining how wave energy is distributed alongshore therefore remains 67 

unknown. 68 
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Coastal cliff-top ground motions have been observed by a number of recent studies to be 69 

generated by waves in the nearshore, the foreshore and at the cliff toe and distinct frequency bands 70 

of signals are observed (e.g. Adams et al., 2005; Young et al., 2011; 2012; 2013; 2016; Dickson and 71 

Pentney, 2012; Norman et al., 2013; Earlie et al., 2015; Vann Jones et al., 2015), which typically 72 

include: long-period ground motions (<0.05 Hz/>20 s) generated by infragravity waves on the 73 

foreshore/beach (e.g. Young et al., 2011; 2012); double frequency microseisms (0.1 – 0.2 Hz/5 – 10 74 

s) generated by the superposition of waves either in deep water, or following reflection from the 75 

coast which have a period half of that of the ocean waves (e.g. Longuet-Higgins, 1950); single 76 

frequency microseisms, generated by shallow-water waves as they interact with the seabed (e.g. 77 

Hedlin and Orcutt, 1989; Friedrich et al., 1998), where the frequency band is determined by shallow 78 

water wave periods, typically 0.1 – 0.05 Hz/10 – 20 s, although this has been shown to vary with 79 

local wave periods (e.g. Norman et al., 2013; Young et al., 2013); high frequency cliff shaking ( > 1 80 

Hz) is generated by wave impacts at the cliff toe (e.g. Vann Jones et al., 2015; Young et al., 2016) or 81 

foreshore edge (Dickson and Pentney, 2012) when tide heights allow. High frequency cliff shaking 82 

generated by wave-cliff impacts, have been found to provide a valuable proxy measurement of wave 83 

energy transfer directly to the cliff (Norman et al., 2013; Young et al., 2016), with statistically-84 

significant relationships observed with monitored cliff erosion (Vann Jones et al., 2015). To date, 85 

cliff-top ground motion studies have largely focussed on single seismometers or on shore-normal 86 

transects of multiple seismometers (Dickson and Pentney, 2012; Young et al., 2012; 2013), yet given 87 

the sensitivity of data to nearshore wave conditions and cliff toe impacts, it is reasonable to assume 88 

that alongshore variations in wave impacts and loading will be reflected in commensurate variations 89 

in microseismic response. 90 

The aim of this study is to constrain how wave energy transfer to the cliff toe varies 91 

alongshore, focussing in particular on the energy transfer around headland and bay morphology. We 92 

use these data to assess the relative control of coastline geometry versus foreshore characteristics 93 

on energy delivery. To achieve this, we deploy an array of cliff-top seismometers to capture the 94 

short-term alongshore variability in high-frequency cliff ground motion around a hard rock, low-95 

sediment bay and headlands. Using high-frequency ground motions as a proxy for wave impacts, and 96 

thus energy transfer directly to the cliff toe, enables us to obtain a relative measure of wave energy 97 

delivery around the coast. 98 

 99 

2 Study site 100 

A 1 km stretch of coast between Staithes and Port Mulgrave on the NE Yorkshire coast, UK 101 

(Fig. 1) was selected as a site, to enable us to explore varying degrees of planform crenulation, 102 
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aspect and foreshore platform configuration. The monitored stretch of coast encompasses one bay 103 

ca. 570 m in width, and two adjacent headlands. The cliffs are 45 - 55 m high (Fig. 2a – g), comprised 104 

of near-horizontally interbedded Lower Jurassic shales, mudstones and limestones, capped with 105 

fine-grained sandstone and glacial till, which are uniform across the study site. The site has a wide 106 

(up to 300 m) rock foreshore (Fig. 2), and a high semi-diurnal tidal range (6 m). The cliff face 107 

exposure to waves and sea water varies considerably during the tidal cycle. During mean low spring 108 

tides the waterline can be up to 300 m from the cliff toe, but during mean high spring tides the still 109 

water level is ca. 1 m above the cliff toe. Dominant incoming wave directions are NE (Fig. 3j). Mean 110 

significant wave height (Hs) for the study period was 0.95 m and maximum wave height (Hmax) was 111 

9.26 m (both measured 1.5 km from the coastline (data courtesy of North East Coastal Observatory). 112 

The cliff morphology, foreshore topography and elevation vary along the coast, ranging from -2 m 113 

OD at mean low spring tide level, to the highest cliff toe elevation at 1.4 m OD at the centre of the 114 

bay (Figs. 1, 2).  115 

 116 

3 Methods 117 

3.1 Field data 118 

The following data were captured over an eight-month monitoring period (December 2013 – 119 

July 2014):  120 

 Seven Güralp 3TP broadband seismometers were deployed in temporary wells dug into the 121 

glacial till at the cliff-top, positioned 10 m from the cliff edge, spaced at ca. 100 m intervals 122 

along the coast (ES01 – ES07, Fig. 1c). Ground motion velocities in three components (N – S, E – 123 

W, vertical (Z)) were sampled at 100 Hz. The flat frequency response of the seismometers is 120 124 

s – 50 Hz. 125 

 At each site the foreshore profile normal to the cliff face was extracted from a high-126 

resolution airborne LiDAR survey collected in 2015 at low tide (Fig. 1c). To extract a profile, the 127 

point cloud (ca. 60 ppm) was gridded using kriging to generate a DEM at 0.25 m resolution, 128 

from which a shore-normal profile was calculated at each instrument position (Figs. 1c, 2h-n). 129 

 Monitored tide and wave heights (sampled every 15 minutes and 30 minutes, respectively) 130 

were obtained from a nearby tide gauge and wave buoy both at Whitby (ca. 13 km south east) 131 

(data courtesy of North East Coastal Observatory, www.northeastcoastalobservatory.org.uk). 132 

The buoy is situated 1.5 km offshore and in a water depth of approximately 17 m. Monitored 133 

wind velocities were obtained from a nearby Met Office (2006) weather station at Loftus (ca. 5 134 

km west).  135 

 136 

http://www.northeastcoastalobservatory.org.uk/
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3.2 Data processing and modelling 137 

3.2.1 Seismic data 138 

The vertical component (Z) was used to avoid signal contamination due to ground tilt, which 139 

can adversely affect the horizontal motion recorded (e.g. Bormann, 2009; Young et al., 2012). Days 140 

containing noise due to instrument errors (e.g. loss of power), or maintenance periods, were 141 

removed. Data gaps varied between the instruments (Fig. 2a-g). Only time periods when all seven 142 

seismometers were working in parallel (95 days) were used in this analysis.  143 

Ground motion velocity was bandpass-filtered to the frequency range 3.3 – 33.3 Hz, which 144 

we observed to represent cliff shaking caused by wave impacts at the cliff toe during high tides (HT) 145 

at this site. Previous studies have demonstrated that high-frequency cliff shaking, with the frequency 146 

range varying slightly between study locations, produces higher correlation coefficients with 147 

modelled and measured cliff toe wave conditions than microseism (MS) and long-period (LP) 148 

frequencies that represent wave loading in the nearshore and offshore (Norman et al., 2013, Vann 149 

Jones et al., 2015; Young et al., 2016). HT ground motion signals have also produced higher 150 

correlation coefficients with observed rockfall (Vann Jones et al., 2015). 151 

Hourly statistics over the 95-day monitoring period describing HT ground motion energy 152 

((µm s-1)2) are presented: hourly total (Totalh), hourly maximum (Maxh) and total energy over the 153 

monitoring period (Total). The time series of HT ground motion energy was also aggregated by water 154 

elevation, derived from the modelled cliff toe water levels (see section 3.2.2.1 below), to assess 155 

energy transfer as a function of water depth and inundation duration (see section 4.3).  156 

 157 

3.2.2 Wave data 158 

3.2.2.1 Wave model 159 

In the absence of monitored cliff toe wave conditions, a linear wave model based on that of 160 

Battjes and Stive (1985) (see Norman et al., 2013) was used to transform wave heights measured at 161 

the wave buoy. Wave heights were transformed by shoaling and energy dissipation via turbulence as 162 

they break in decreasing water depths (calculated from the tide gauge time-series for the monitoring 163 

period) across the nearshore and foreshore profile normal to the cliff seaward of each seismometer 164 

(Fig. 2h-n). The model accounts for set-up and set-down as waves break but does not account for 165 

turbulence within surf bores after breaking, nor bed friction in the surf and swash zones. At each 166 

timestep, once waves had broken, wave heights for the remaining depth profile to the water’s edge 167 

were set at the breaking wave height, which decreases with the water depth and therefore 168 

simulates further energy dissipation within the surf and swash zones. The model also does not 169 

account for energy dissipation due to wave refraction, reflection or diffraction. Although a 3D model 170 
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would be desirable because of the complex foreshore topography, this was not possible due to a 171 

lack of high resolution bathymetry data. Time series of combined tide and modelled wave elevation 172 

at the cliff toe (helevation, m OD) and combined tide and modelled wave height above the cliff toe 173 

(hheight, m) were then calculated for each profile to derive inundation elevation, water surface height 174 

above the cliff toe, and inundation frequency at each site.  175 

 176 

3.2.2.2 Model validation  177 

Whilst no monitoring of cliff toe/foreshore waves was available for the seismometer 178 

monitoring period, wave pressure sensors (WPS (RBR Solo D, sampling at 2 Hz for 2048 samples 179 

every 30 minutes)) were installed on the foreshore for 13 days (20 Feb – 4 Mar 2015) for a 180 

subsequent study. The WPS were positioned ca. 10 m from the cliff toe on the wave model profiles 181 

of ES02, ES04 and ES06 (within 10 m), and within 73 m from the profiles of ES05 and ES07. The WPS 182 

at ES02, ES04 and ES06 were used in the model validation. 183 

There is a broadly linear relationship between the significant wave height (Hs) observed and 184 

modelled for all three sites individually (Fig. 4a-c), and for all combined (Fig. 4d). This indicates that 185 

at ES01 and ES06 the wave model overestimates wave heights (Fig. 4a, c), whereas at ES04 it 186 

underestimates height (Fig. 4b). Differences between modelled and monitored wave heights 187 

increase with height, and the fewer wave heights over 1 m at ES04 and smaller sample size may 188 

explain why the relationship at ES04 is underestimated. The coefficient of determination of the 189 

relationship at ES04 is also lower (r2 = 0.264) than at ES01 (r2 = 0.416) and ES06 (r2 = 0.343), likely 190 

also because of the lack of larger Hs (> 1 m). Differences in this relationship between sites illustrate 191 

the influence of the complex foreshore topography on the wave characteristics.  192 

 193 

4 Results 194 

4.1 Observed cliff-top seismic signals 195 

Three distinct bands of marine-generated seismic signals are evident in the spectrograms for 196 

each instrument (Fig. 3): long period (LP) signals (>20 s/<0.05 Hz) assumed to be generated by 197 

infragravity waves on the foreshore; microseisms (MS) (1-20 s/1-0.05 Hz) consisting of double 198 

frequency (DF) and single frequency (SF) microseisms; and high frequency shaking (0.03 – 0.3 s/3.33 199 

– 33.33 Hz) attributed to wave impacts at the cliff toe during high tides (HT). Signal power for each 200 

band (LP, MS and HT) varies across the seven seismometers (Fig. 3). Commonly at this site we 201 

observe increases in HT signal power with corresponding increases in MS and LP signal power, 202 

indicative of stormier conditions with larger waves dissipating as they break across the foreshore 203 

and at the cliff during high tides and storm surges (Fig. 3). The highest HT signal power is observed at 204 
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ES06 (Fig. 3f), with a peak of ~-65 dB. ES07 (Fig. 3g) and ES01 (Fig. 3a) have similar peak signal 205 

powers, but these peaks occur less frequently than at ES06. ES04 (Fig. 3d) has significantly fewer HT 206 

peaks than observed at the other sites, and the peak signal power is lowest (-70 dB).  207 

To determine the sources of these ground motion signals and their proximity to the 208 

seismometers, we examine the signals over a range of incident tide and wave conditions (Figs. 5, 6). 209 

During a spring tide storm (Fig. 5a-i) (Hs= 3.15 m, maximum wave height = 9.26 m, observed at the 210 

wave buoy) it is evident that both the LP and HT signal power is tidally modulated, whereby signal 211 

power increases and decreases with tide height (Fig. 5a-i). These signals are thus generated by the 212 

presence of sea on the foreshore and at the cliff. Increases in signal power in the LP signal precede 213 

those in HT (Fig. 5a-g), indicating the LP signal is generated across a wider area.  214 

The lowest LP ground motion signal powers occur at ES07 (peak power of ~-115 dB) (Fig. 5g), 215 

and the highest (~ -105 dB) at ES05 and ES06 (Fig. 5e, f). At ES05, ES06 and ES07, increased signal 216 

powers in the LP band also occur during low tides (Fig. 5e-g), assumed to be generated by 217 

infragravity waves on the foreshore. The duration and power of these signals represents the 218 

effectiveness of the foreshore near these locations in either releasing infragravity energy via wave 219 

breaking, or the propagation of infragravity energy tied to swell wave groups across the foreshore. 220 

The tidal modulation of HT can be seen clearly at all sites in the power spectrograms 221 

captured during the storm and spring tide example (Fig. 5a-i). Ground motion signal power varies 222 

across the seven instruments, with highest values (~-60 dB) observed at the headlands, ES01 (Fig. 5a) 223 

and ES06 (Fig. 5f). During the low tides, the HT signal power is higher than during non-storm 224 

conditions (Fig. 5j-r) where it is absent, suggesting that the storm surges raise water levels up the 225 

foreshore and towards the cliff, generating wave impacts on the foreshore more proximal to the cliff 226 

toe. ES01 (Fig. 5a), ES06 (Fig. 5f) and ES07 (Fig. 5g) have higher HT signal powers during the low tides 227 

in the storm than at the other sites, which suggests that in these locations waves are able to break 228 

closer to the cliff.  229 

The shorter duration of the peaks in HT ground motion signal powers compared to the LP 230 

signal powers corresponds to the deepest water levels at the cliff toe at each site (> 2 m OD) (Fig. 5a-231 

g), indicating HT ground motion is generated by waves impacting against the cliff face during 232 

elevated water levels.  At ES06 helevation (Fig. 5h) exceeds the cliff toe around 1 – 2 hrs earlier than at 233 

the other sites because it has the lowest cliff toe elevation (-0.62 m OD). ES06 thus is subject to the 234 

deepest cliff toe water depths (6.44 m OD) enabling larger waves to reach the cliff (Fig. 5h).  235 

ES04 (Fig. 5d) has the lowest HT ground motion signal power, and a more pronounced binary 236 

distinction in the signal between high and low tides, indicating that waves only become 237 

microseismically detectable, and therefore perhaps erosively effective, during the highest tidal 238 
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elevations. ES04 has the shortest duration of inundation (Fig. 5h), the highest cliff toe elevation (1.4 239 

m OD), and as a result, the lowest peak helevation (4.76 m OD) (Fig. 5h).  240 

Higher MS signal powers occur at ES05, ES06 and ES07 during storm conditions (Fig. 5e-g) 241 

(peak power of ~-80 dB compared to peaks of -92 dB at ES01 – ES04, Fig. 5a-d). During the high tides, 242 

the MS signal powers at ES05 – ES07 also extend across a wider range of periods, from 20 s to <1 s, 243 

where the MS ground motion signals merge with the HT ground motion signals (Fig. 5e-g). 244 

Differences in MS signal powers between the sites demonstrate that some of the MS signal power 245 

must be generated by gravity waves on the foreshore/in the nearshore local to each seismometer.   246 

During less energetic spring tides (Hs = 1.05 m, maximum wave height = 3.5 m at the wave 247 

buoy) (Fig. 5j-r) the HT and LP ground motion signals are still evident during each high tide at all 7 248 

sites, however the HT and LP signal power values and durations are lower and shorter compared to 249 

the storm spring tide example (Fig. 5a-g). At ES06 (Fig. 5o) the peak HT signal power is 15 dB lower 250 

and the peak LP signal power is 25 dB lower, and approximately three hours shorter. Both the LP and 251 

HT signal powers are weakest during the second high tide (Fig. 5j-p) when peak tide elevation is 3.1 252 

m OD (Fig. 5q) and peak Hs is 0.8 m (Fig. 5r). The wave heights are similar to those during the first 253 

tide of the storm example (Fig. 5i) when the HT and LP seismic signals are absent (Fig. 5a-g), however 254 

the higher tide elevation (Fig. 5q) enables the HT signal to be generated. It is therefore the 255 

combination of tide and wave height that are important to the generation of HT. Differences in HT 256 

signal power between sites are more apparent during less energetic conditions (Fig. 5j-p) than 257 

during the storm example (Fig. 5a-g).  258 

During stormy neap tides (Hs = 1. 88 m, maximum wave height = 6.09 m at the wave buoy) 259 

the HT and LP ground motion signals are only evident during high tides (peak = 1.85 m OD) when Hs 260 

is ~ 2 m (Fig. 6a-i).  The signal power and duration of the LP signals is lower and shorter (for example 261 

at ES06 ~10 dB lower and ~three hours shorter, Fig. 6f) than during the spring tide storm (Fig. 5a–g), 262 

as lower tide heights and a smaller storm surge result in shorter foreshore, and cliff inundation 263 

durations. Smaller wave heights result in lower signal power across the marine-generated seismic 264 

signals. The HT signals are less clearly defined and lower power than both spring tide examples (Fig. 265 

5) (e.g. ~20 dB lower at ES06).  266 

During low wave energy neap tides (Hs = 0.32 m, maximum wave height = 0.76 m) (Fig. 6j–r) 267 

there are no HT or LP ground motion signals. In the absence of the HT seismic signals, it is evident 268 

there is also high frequency shaking generated by wind (WI), particularly when velocities exceed ~ 7 269 

ms-1 at frequencies >= 10 Hz/<= 0.1 s (Fig. 6r). The WI signal overlaps with the higher frequencies of 270 

the HT signal, however the WI signal is only generated during above-average wind velocities, and the 271 

spring tide examples (Fig. 5) demonstrate that the HT signal dominates the 3.3 – 33.3 Hz band.  The 272 
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difference in ground motion signals between the sites demonstrates that these signals are generated 273 

locally to each seismometer and that the sea conditions generating them vary across distances of < 274 

79 m (the shortest distances between neighbouring seismometers).  275 

 276 

4.2 Observed alongshore distribution of HT ground motion energy  277 

The remainder of the analysis focuses on the HT ground motion signals to examine 278 

alongshore differences in wave-cliff impacts.  The eastern headland in our study site, ES06, 279 

experiences the greatest HT ground motion energy in all metrics presented (Fig. 7): Total (4.22 x 1014 280 

(µm s-1)2) (Fig. 7a); Maxh (117 x 103 (µm s-1)2) (Fig. 7b) and 99th percentile of the Maxh (10.7 x 103 (µm 281 

s-1)2) (Fig. 7c).  282 

ES07 has the second highest value of Total (2.67 x 1014 (µm s-1)2), just over half that at ES06 283 

(Fig. 7a). The Maxh at ES07 is the lowest (3.1 x 103 (µm s-1)2) (Fig. 7b), indicating it is average wave 284 

conditions here that are more energetic relative to sites ES01 - ES05, rather than the extreme 285 

events.  286 

Whilst ES05 has a high relative Maxh value (104.8 x 103 (µm s-1)2) (Fig. 7b), the 99th percentile 287 

(3.2 x 103 (µm s-1)2) (Fig. 7c) indicates an outlier, the Total (Fig. 7a) is the third lowest, indicating it is 288 

actually a relatively low HT ground motion energy site. Site ES04 which lies at the centre of the bay 289 

has the lowest of all the measures of HT ground motion energy, with Total = 0.21 x 1014 (µm s-1)2 (Fig. 290 

7a) 5% of that received at ES06. ES02 is also a relatively low-energy site, with the second lowest 291 

measures of HT ground motion energy (excluding Maxh) and Total = 0.46 x 1014 (µm s-1)2, 12% of that 292 

at ES06 (Fig. 7a). 293 

ES01, the western headland, has the largest Maxh HT ground motion energy (118 x 103 (µm 294 

s-1)2) (Fig. 7b), but the 99th percentile suggests this is, again, an outlier (5.8 x 103 (µm s-1)2) (Fig. 7c). 295 

The Total HT ground motion energy (1.95 x 1014 (µm s-1)2) is similar to that at ES03 (2.15 x 1014 (µm s-296 

1)2) (Fig. 7a), which lies at the centre of the bay.  297 

 298 

4.3 Controls of the observed alongshore variability in HT ground motion energy 299 

The observed variability in microseismic ground motions implies that conditions that 300 

determine wave characteristics and energy delivery to the cliff toe vary between the seven positions 301 

monitored. The marine controls on signal variability are tested by examining the effects of both 302 

marine and foreshore variables. We consider cliff toe elevation, foreshore characteristics, tide and 303 

wave heights, and examine the effects of these on the ground motion signals recorded by the seven 304 

instruments. 305 
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Cliff toe elevation varies over 2.02 m between sites and is a key control of energy transfer to 306 

the cliffs (Fig. 8). ES06 experiences inundation over the greatest elevation range (Rind, 8.2 m) and has 307 

the lowest cliff toe elevation (-0.62 m OD), a steep, narrow and smooth foreshore, conducive in form 308 

to ramping waves up-cliff (Fig. 8k). The greatest HT ground motion energy over the monitoring 309 

period (Figs. 7, 8l) is observed here. ES04 has the highest cliff toe elevation (1.4 m OD) and the most 310 

constricted range in inundation (Rind = 4.7 m) (Fig. 8g), with lower tide water depths and thus wave 311 

heights. This instrument records the lowest HT energy (Figs. 7, 8h), indicating that significant wave 312 

energy dissipation occurs before waves reach the cliff toe at this location. Where foreshore 313 

topography enables waves to break closer to or at the cliff, more wave energy is transferred into cliff 314 

as HT ground motion.  315 

The vertical distribution of Total, derived from helevation, varies between sites but again shows 316 

no systematic alongshore pattern that mirrors the coastal planform (Fig. 8). The foreshore profiles 317 

show that not only cliff toe elevation but also foreshore topography and width vary considerably 318 

between the seven sites (Figs. 2, 8). Peaks in Total (Fig. 8b, d, f, h, j, l, n) typically coincide with water 319 

levels at elevations most frequently inundated by helevation, or the zone just above (ES01 - 3, ES06 - 7), 320 

and broadly reflect the vertical inundation duration below 5 m OD (Fig. 8a, c, e, g, i, k, m). At all sites 321 

there is also an increase in Total when helevation inundation is at its maximum in the largest albeit 322 

rarest storms. At sites ES02, ES04 and ES05, this is when the highest Total occurs (Fig. 8). ES02, ES04 323 

and ES05 are the lowest HT ground motion energy sites suggesting that when the water level is at 324 

the more frequently inundated elevations of the cliff face, most incident wave energy is dissipated 325 

across the foreshore before reaching the cliff toe and that only during the largest storm events can 326 

significant energy be transferred to the cliff at these sites.  327 

At the sites which experience more energetic HT ground motions (ES06, ES07, ES03 and 328 

ES01) the vertical distribution of Total suggests that significant wave energy is transferred to the cliff 329 

throughout the tidal inundation cycle. Therefore, less wave energy is dissipated across the foreshore 330 

in front of the cliff in these locations. At these sites, the peak Total occurs at different elevations, 331 

likely representing the varying foreshore characteristics, and the resulting differences in shoaling of 332 

the incident wave field. As foreshore geometry varies in a non-systematic manner between adjacent 333 

sites, it is clearly a key control on the transfer of wave energy, influencing cliff microseismic 334 

excitation. 335 

To examine the effect of cliff characteristics on the HT ground motion signal recorded at 336 

each seismometer, such as signal attenuation or amplification, and to determine the relative 337 

influence of these on Total compared to foreshore characteristics, metrics describing cliff and 338 



12 
 

foreshore topography were correlated with Total (Fig. 9). Those that derived statistically-significant 339 

relationships (p-value >= 0.05) with Total are presented in Fig. 9.  340 

Cliff toe elevation (Fig. 9a), the number of foreshore steps (Fig. 9b), and foreshore elevation 341 

range (Fig. 9c), all have a negative linear relationship with Total (r2 >= 0.67). The linear distance 342 

between the seismometer and the cliff toe, and along the cliff face, demonstrate positive linear 343 

relationships with Total (r2 = 0.80 and 0.78 respectively, Figs. 9d, e), whilst the mean and maximum 344 

cliff slope have negative linear relationships (r2 = 0.93 and 0.84, respectively, Figs. 9f, g). The 345 

relationship between the seismic signal amplitude and both cliff slope and distance are the inverse 346 

of what would be expected if local cliff topography dominate the HT seismic signal amplitude (e.g. 347 

Ashford et al., 1997; Messaudi et al., 2012). These results demonstrate that the relative amplitude of 348 

the HT ground motion signal alongshore is, on the whole, not determined by the effects of local cliff 349 

topography. Instead, the HT signal recorded is dominated by the microseismicity resulting from the 350 

interaction of the sea and the cliff toe, which in turn reflects the local variability in the foreshore 351 

characteristics (Fig. 9). This demonstrates that using the current seismometer array/set-up at this 352 

site, the HT ground motion signal provides a valuable representation of marine conditions at the cliff 353 

toe local to the seismometer and enables alongshore comparison of HT signal amplitudes.  354 

At all seven sites there is an apparent threshold of the combined tide and wave height above 355 

the cliff toe (hheight, m) at 2 m, above which there is an absence of smaller HT ground motion energy 356 

events and Totalh energy increases with hheight (Fig. 10). Despite the scatter in the data, on average 357 

we observe an order of magnitude increase in Totalh between hheight of 5 m and 7 m, increasing from 358 

10 x 1011 (µm s-1)2 to 10 x 1012 (µm s-1)2. A similar behaviour above 2 m at all sites may suggest that 359 

water depths during the large storm events are deep enough that the local foreshore effects on 360 

wave shoaling are effectively over-written, whereby a more uniform microseismic response is 361 

observed at all instruments.  362 

 363 

5 Discussion 364 

5.1 Overview of findings 365 

We find HT ground motions reflect variations in foreshore topography and mirror the 366 

resulting variability in wave energy dissipation. We show distinct differences between the 367 

microseismic excitation of cliffs within bays and headlands. The observed microseismic ground 368 

motion is shown to encompass the complexity of nearshore wave climate, including refraction, 369 

foreshore and cliff toe characteristics, into a single measure, providing a relative measure of energy 370 

delivery to the cliffs.  371 

     372 
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5.2 The influence of foreshore morphology on HT ground motion energy 373 

The alongshore distribution of HT microseismic energy is highly variable, with no pattern 374 

that obviously maps onto the bay - headland planform coastline geometry. Our results demonstrate 375 

the importance of the foreshore modification of waves in driving energy transfer to the cliff, which 376 

potentially then maps onto the resultant erosion response. Local alterations in water depth and 377 

foreshore topography play a key role in the alongshore distribution of wave energy that is available 378 

to generate cliff HT ground motions, and over-rides that of macroscale planform coastline geometry. 379 

Importantly the results show that these foreshore characteristics vary significantly over only short 380 

distances, here ca. 100 m. The exact position of a seismic monitoring station along a coast therefore 381 

holds a considerable influence on the nature of the HT ground motion signals that will be observed.  382 

Cliff toe and foreshore elevation relative to the tidal range determines water depths and 383 

thus wave heights at the cliff and locations of wave breaking. The different elevations of the cliff toe 384 

across the monitored 1 km coastline examined here, relative to the macrotidal range (6 m), result in 385 

significant variability in high tide water depths (modelled maximum of 2.88 – 4.9 m above the cliff 386 

toe) and thus wave heights (modelled maximum wave heights of 2.03 - 3.44 m). These observations 387 

match those of recent studies that have used transects of pressure sensors to measure the cross-388 

shore distribution of wave energy, and the corresponding wave spectra, on rock foreshores. Both are 389 

dependent on the foreshore morphology and cliff toe elevation relative to the tidal range (Ogawa et 390 

al., 2011 & 2016; Poate et al., 2016; Stephenson et al., 2017). At sites with large macrotidal ranges 391 

(i.e. >7 m) during high tides and average wave conditions, pressure sensor data have shown the 392 

wave breakpoint to move landwards across the foreshore as tide levels rise (Poate et al., 2016; 393 

Stephenson et al., 2017) and increased corresponding wave energy density cross-shore (Stephenson 394 

et al., 2017). This effect can be seen at ES06 where the low cliff toe elevation and resulting deeper 395 

waters enable waves to break closer to/at the cliff as compared to at the other instrument locations 396 

(Fig. 2). In contrast the wide extent of high elevation foreshore at ES01, and resulting shallow water 397 

depths, means that waves break further away from the cliff than at the other sites (Fig. 2).  398 

In a study of six microtidal platforms, Ogawa et al. (2016) found platform width and 399 

elevation to be dominant controls on wave energy reaching the cliff toe. More narrow and lower 400 

elevation platforms enable greater gravity wave energy to propagate across the platform due to 401 

greater water depths (Ogawa et al., 2016), which matches our observations where the greatest HT 402 

ground motion energy occurs at ES06. At higher elevation and wider microtidal platforms, greater 403 

gravity wave energy is dissipated across the platform and the ratio of infragravity to gravity energy 404 

increases towards the cliff due to the shallow water depths (Beetham and Kench, 2011; Ogawa et al., 405 

2016). However, at East Staithes, foreshore width did not derive a statistically significant relationship 406 
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with HT ground motion energy observed at the cliff. This may be due to the complex foreshore 407 

topography, the presence of multiple steps, and the variability in between the seven instrument 408 

locations. Using pressure sensors across a ~300 m-wide macrotidal platform (11 m range), 409 

Stephenson et al. (2017) observed that high tide water depths enabled waves <2 m to travel 410 

unbroken across the platform, which only begin to break near the cliff toe, producing a narrow surf 411 

zone at the inner foreshore. At microtidal sites Marshall and Stephenson (2011) also found 412 

foreshore width to have a lesser influence on wave energy dissipation across the foreshore than 413 

foreshore gradient and water depths.  414 

The relative importance of foreshore gradient is determined by elevation relative to the tidal 415 

range, in addition to the tidal range itself. The importance of gradient and width may thus change 416 

throughout the tidal cycle (Ogawa et al., 2016), and hence here between sites. The role of foreshore 417 

gradient is also complicated by the variability cross-shore by, for example, the presence of steps. 418 

This is confounded by the common simplification to use one value for a whole site, which may not 419 

be representative of the whole platform width, as would be the case at East Staithes. In this study, 420 

sites of low foreshore roughness (here measured as the number of steps, given the minimal boulder 421 

coverage on the foreshore on this section of coast) experience lower cross-shore wave energy 422 

dissipation relative to the other sites, also observed at other macrotidal rock foreshores by Poate et 423 

al. (2016).  424 

Differences in MS and LP signal power between sites demonstrates the effect of the varied 425 

foreshore morphology on wave energy dissipation. Higher MS and LP signal power at sites indicates 426 

the foreshore is conducive for propagating higher amounts of infragravity and gravity wave energy 427 

across the foreshore. The differences in HT total energy between sites, which exhibit similar MS/LP 428 

ground motion signals, indicate that foreshore characteristics near the cliff toe play a key role in 429 

dissipating wave energy and determining whether waves have already broken at the instant when 430 

they impact against the cliff toe. 431 

Our results show that HT ground motion energy across the seven sites becomes more similar 432 

in character during an extreme storm, as compared to low energy, or indeed average, conditions 433 

(Figs. 5, 6). The difference in water depths and modelled wave heights at the toe of the seven sites, 434 

however, suggests that the levels of HT ground motion energy recorded at the seven sites during the 435 

storm do not represent similarities in wave heights, but instead may indicate similarities in wave-cliff 436 

face interaction, such as a more uniform pattern of waves breaking onto the cliff toe. At Scots Bay in 437 

the Bay of Fundy, another macrotidal site, during storm conditions Trenhaile and Kanyaya (2007) 438 

observed narrowing surf zones, lower levels of wave attenuation and more energetic types of 439 

breaking waves (plunging breakers) in the upper foreshore during high tides. This was compared to 440 
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the lower platform during lower tide levels and was attributed to greater water depths and higher 441 

platform gradients at the upper foreshore. Our results may suggest that similar cross-shore shifts in 442 

wave characteristics occur at our site during large storms, and that water depths are sufficiently 443 

deep that the effects of the variable foreshore characteristics between sites are negated, and 444 

therefore so too are the differences in wave breaking across the foreshore. We identify a threshold 445 

of ca. 2 m above the cliff toe (Fig. 10), above which we suggest conditions assimilate across the 446 

seven sites, as less wave energy dissipation occurs and more waves break directly against the cliff 447 

toe to generate HT cliff shaking.  448 

 449 

5.3 The influence of coastline geometry on HT ground motion energy 450 

Using HT ground motion energy as a proxy for wave energy transfer to the cliff toe, we 451 

demonstrate that at this hard rock, low-sediment coast, the relative energy observed at different 452 

positions alongshore is determined more by foreshore characteristics than the macro-scale coastline 453 

planform morphology. Coastline planform may rather be more influential in determining the 454 

difference in HT ground motion energy at the two headlands. Carter et al. (1990) and Limber et al. 455 

(2014) observed from field studies and modelling that energy observed at headlands is determined 456 

by the degree of coastline projection seaward, and thus exposure to incoming waves. At this study 457 

site, the ES06 headland protrudes slightly further from the bay as compared to the ES01 headland, 458 

and to the east of ES06 and ES07 the coastline drops away to the south (Fig. 1). Whilst both 459 

headlands are exposed to the dominant north-easterly waves, the greater projection seaward, and 460 

the southerly orientation of the coast to the east of the headland ES06 (Fig. 1), means that this site is 461 

exposed to a greater range of wave directions than ES01. 462 

In Limber et al.’s (2014) numerical wave transformation model, headlands that protrude 463 

further induce greater wave refraction and convergence, and thus receive greater wave energy via 464 

wave-rock impacts. Whilst the greatest energy occurs at headland ES06 in our study, the lower 465 

foreshore elevation and deeper waters around the headland mean that during the dominant NE 466 

wave directions there is actually little wave refraction around the headland itself (Fig. 1d), and rather 467 

greater energy is due to the higher water depths around the headland. The difference in foreshore 468 

characteristics at ES06 and ES01 may in part be due to their relative exposure to the incident wave 469 

field and the resulting erosion of the foreshore. The coastline characteristics also likely explain why 470 

ES07, on the eastern flank of the ES06 headland, has the second highest energy total, and supports 471 

Komar’s (1985) suggestion that greatest energy would be expected at the headland point (ES06). The 472 

geometry of the two headlands is also different, with ES01 being wider alongshore, shorter cross-473 

shore and more rounded in planform. ES06 is narrower, longer and similar to the ‘needle-like’ 474 
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headlands characterised by Komar (1985). Interestingly, the relative energy and planform 475 

morphologies is counter to that observed by Carter et al. (1990) in Nova Scotia, who found stubby, 476 

rounded headlands to form in more exposed, higher energy positions.   477 

 478 

5.4 Cliff ground motions as proxies of cliff toe wave energy 479 

This study builds on the previous body of work using single cliff-top seismometers that have 480 

demonstrated high frequency cliff shaking to be a valuable proxy of relative wave energy transfer to 481 

the cliff toe (Vann Jones et al., 2015; Young et al., 2016). We have demonstrated that the magnitude 482 

of cliff toe wave impact generated ground motions varies significantly alongshore and even over 483 

short distances (here ~100 m).  484 

The wave-cliff impact signal (HT) frequency range varies between this and other 485 

microseismic studies globally (e.g. >0.3 Hz (Young et al., 2011), 7 – 20 Hz (Dickson and Pentney, 486 

2012), 1.1 – 50 Hz (Norman et al., 2013; Vann Jones et al., 2015), 20 - 45 Hz (Young et al., 2016)). 487 

Young et al. (2013) observed a range of bands between 2 – 40 Hz across a variety of soft and hard 488 

rock cliffs globally. The range of frequency bands observed indicates differences in site response to, 489 

and local effects on, wave-cliff impacts. Young et al. (2013) attribute the variability in site response 490 

to combinations of tide elevation, wave energy, site morphology and geology and local signal decay. 491 

Rock foreshores clearly complicate wave-cliff impact microseismic signals and result in significant 492 

variations between even contiguous sites because of the feedbacks between the foreshore and 493 

wave breaking and attenuation. Key to this is the elevation relative to the tidal range, and thus 494 

where waves break relative to the cliff toe. For example, at a meso-tidal site of high foreshore 495 

elevation relative to the high tide level, Dickson and Pentney (2012) observed the wave-cliff impact 496 

signal to be generated during low tides as waves broke at the steep seaward edge of the foreshore 497 

and shallow depths across the platform dissipated wave energy before reaching the cliff toe. 498 

The exact area of signal generation at the cliff toe is unknown and further work is required 499 

to examine concurrently monitored cliff toe and foreshore wave conditions and cliff-top ground 500 

motions, to improve our understanding of cliff toe waves. However, the differences in HT signals 501 

between sites in this study demonstrate that the HT signals are generated by cliff-wave impacts local 502 

to each seismometer, whereby small distances along coast can result in very different behaviours 503 

observed. 504 

  Some of the variation observed in ground motion energy across the sites must be 505 

considered a function of local site and instrument effects, which influence to some degree signal 506 

attenuation and amplification, including instrument-ground coupling, cliff material and structure 507 

(Lowrie, 1997; Stein and Wysession, 2003), topography (Ashford et al., 1997), and moisture content 508 
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(Mavko et al., 1998). However, identifying, testing and quantifying these effects on the signals and 509 

calibrating signals recorded at each site remains challenging. In simple analysis of the relationship 510 

between HT signal energy and cliff morphology, such as the slope and distance from seismometer – 511 

cliff toe, we found the HT signal to be dominated by cliff toe wave conditions, which are of a 512 

magnitude that dominates any influence of instrument position or highly local site effects in our 513 

array (e.g. Ashford et al., 1997; Messaudi et al., 2012). Inevitably, with more structural, geological or 514 

topographic variability between sites, such effects must at some point become significant.  515 

HT ground motion signals have been found to have the strongest correlations with observed 516 

cliff face erosion, as compared to microseism (MS) and long period (LP) frequency bands (Vann Jones 517 

et al., 2015). As a result, we argue that our findings may have important implications for how wave-518 

driven cliff erosion is distributed alongshore and more work is required to examine this further.  519 

 520 

6 Conclusions 521 

High frequency cliff motions (HT) generated by wave-cliff impacts provide a valuable proxy 522 

measure of the relative wave energy transfer along a coast at the cliff toe. Using an array of seven 523 

cliff-top seismometers placed at ca. 100 m intervals along a 1 km stretch of coastline, we quantified 524 

the alongshore distribution of relative wave energy transfer. There is no systematic alongshore 525 

pattern in microseismic HT ground motion energy recorded by the seismometers during the 526 

monitoring period around the bay and headlands study site. The greatest HT ground motion energy 527 

occurs at a headland and the lowest at the centre of the bay (5% of the headland). However, there is 528 

an order of magnitude difference in total HT ground motion energy between some neighbouring 529 

sites within the bay, and the two headlands experience very different relative HT ground motion 530 

energies (energy at the eastern headland is 49% of the western headland). We suggest that the 531 

significant variations in foreshore characteristics observed here are responsible for the alongshore 532 

variations in the (modelled) cliff toe water elevations and corresponding HT ground shaking energy 533 

observed. Importantly, the effect of the foreshore on wave energy dissipation overrides the 534 

influence of macroscale coastal planform geometry. We suggest that the alongshore variability in 535 

wave energy focussing over short distances controlled by local variability in foreshore characteristics 536 

that we observe will inevitably hold important implications for the distribution of resulting cliff 537 

erosion, and more work is required to examine this further.  538 
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 713 

Figure captions 714 

 715 

Figure 1: Study site location. a) Location of the study site on the North Yorkshire coast, UK. b) The 716 

study site lies to the east of the village of Staithes and consists of two headlands and one bay 717 

(highlighted by the dashed box). The foreshore exposed at mean low spring tide is shown. c) DEM of 718 

the studied bay and headlands showing foreshore elevations above mean low spring tide. The 719 

locations of the seven seismometers are denoted by the stars: ES01 – ES07 moving west to east. The 720 

grey lines indicate the positions of the foreshore profiles in front of each seismometer shown in 721 

Figure 2. The black contour is at 1 m OD and elevation below this is shaded at 0.25 m intervals until 722 

the mean low spring tide elevation at -2 m OD. d) Aerial photo of the study site taken on 09/12/2017 723 

1 hour 14 minutes after the high spring tide. Tidal elevation at the Whitby tide gauge was 1.5 m OD, 724 

Hs recorded at the Whitby wave buoy was 4.3 m and wave direction was NNE. 725 

 726 

Figure 2: Cliff and foreshore profiles at the seismometer locations: a) ES01; b) ES02; c) ES03; d) ES04; 727 

e) ES05; f) ES06; g) ES07. The stars denote the position of the seismometer at the cliff top. Detail of 728 

the foreshore profiles used within the wave model at: h) ES01; i) ES02; j) ES03; k) ES04; l) ES05; m) 729 

ES06; n) ES07. Tidal elevations recorded at the Whitby tide gauge are shown: highest astronomical 730 

tide (HAT), mean high water spring (MHWS), mean high water neap (MHWN), mean low water neap 731 

(MLWN), mean low water spring (MLWS). The foreshore profiles extend to the MLWS elevation.  732 

 733 

Figure 3: Power spectrograms of cliff ground motion for the seven seismometers, tide and wave 734 

heights and wave directions for the monitoring period 29/11/2013 – 20/07/2014. a – g) Power 735 

spectrograms of the vertical (Z) cliff motions for the seismometers’ frequency response range (0.03 – 736 

180 s/33.3 – 0.0055 Hz). Power is presented in decibels (dB) calculated as 10 log10((ms-1)2/Hz). Three 737 

distinct bands of ground motions are identified in each spectrogram: long-periods (LP) (>20 s/<0.05 738 

Hz) (black box); microseisms (MS) (1-20 s/1-0.05 Hz) (red box); and high frequency shaking (HT) 739 

caused by wave impacts at the cliff toe during high tides (0.03 – 0.3 s/3.33 – 33.33 Hz) (blue box). 740 

The white zones indicate data gaps. a) ES01. b) ES02. c) ES03. d) ES04. e) ES05. f) ES06. g) ES07. h) 741 

Tide heights and residuals monitored at the Whitby tide gauge approximately 13 km south east of 742 

the field site. i) Significant wave heights (Hs) and j) wave direction frequency (%) monitored at the 743 
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Whitby wave buoy, approximately 13 km south east of the study site, 1.5 km offshore and in 744 

approximately 17 m water depth. At ES01 there is a persistent band of noise at 10 – 20 Hz, of 745 

approximately - 75dB, the steady nature of which suggests mechanical noise. Wave and tide data are 746 

courtesy of the North East Coastal Observatory (www.northeastcoastalobservatory.org.uk). 747 

 748 

Figure 4: Relationships between the wave pressure sensor (WPS) and the wave model significant 749 

wave heights (Hs) for a subsequent study (13-day duration, 20 Feb – 4 Mar 2015) at: a) ES01; b) ES04; 750 

c) ES06; and d) all three sites combined. Statistically significant relationships are presented (at p-751 

value >= 0.05).  752 

 753 

Figure 5: Time series of spring tides during: a-i) (first column) a storm occurring on 05-06/12/13; and 754 

j-r) (second column) less energetic conditions on 03/03/14. a-g & j-p) Spectrograms of the power 755 

spectral density across the seven seismometers (dB calculated as 10 log10((ms-1)2/Hz)) for the Z 756 

component, within the period/frequency range 0.03 – 180 s / 33.3 – 0.0055 Hz, at a & j) ES01; b & k) 757 

ES02; c & l) ES03; d & m) ES04; e & n) ES05; f & o) ES06; g & p) ES07; h & q) concurrent tide and 758 

combined tide and wave elevation at the cliff toe (helevation) modelled for East Staithes; and i & r) 759 

significant wave height (Hs) and maximum wave height (Hmax) recorded at the Whitby wave buoy, 760 

and wind velocity measured at Loftus (5 km from study site). Wave and tide data are courtesy of the 761 

North East Coastal Observatory (www.northeastcoastalobservatory.org.uk). Wind data are courtesy 762 

of the Met Office (2006). 763 

 764 

Figure 6: Time series of neap tides during: a-i) (first column) a storm occurring on 26-27/03/14; and 765 

j-r) (second column) less energetic conditions on 10/04/14. a–g & j-p) Spectrograms of the power 766 

spectral density across the seven seismometers (dB calculated as 10 log10((ms-1)2/Hz)) for the Z 767 

component, within the period/frequency range 0.03 – 180 s / 33.3 – 0.0055 Hz, at a & j) ES01; b & k) 768 

ES02; c & l) ES03; d & m) ES04; e & n) ES05; f & o) ES06; g & p) ES07; h & q) concurrent tide and 769 

combined tide and wave elevation at the cliff toe (helevation) modelled for East Staithes; and i & r) 770 

significant wave height (Hs) and maximum wave height (Hmax) recorded at the Whitby wave buoy, 771 

and wind velocity measured at Loftus (5 km from study site). Wave and tide data are courtesy of the 772 

North East Coastal Observatory (www.northeastcoastalobservatory.org.uk). Wind data are courtesy 773 

of the Met Office (2006). 774 

 775 
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Figure 7: Various statistics of HT ground motion energy ((µm s-1)2) for each of the seven instruments 776 

over the monitoring period 29/11/2013 to 20/07/2014: a) total HT ground motion energy over the 777 

monitoring period (Total); b) hourly maximum (Maxh); c) 99th percentile of the Maxh. 778 

 779 

Figure 8: Distributions of water level inundation frequency and total HT ground motion energy over 780 

the monitoring period (Total) up the cliff profile within the inundation zone during the monitoring 781 

period 29/11/2013 – 20/07/2014 for each of the seismometer locations: a & b) ES01; c & d) ES02; e 782 

& f) ES03; g & h) ES04; i & j) ES05; k & l) ES06; m & n) ES07. Inundation frequency (percentage) of 783 

tide-only (black line) and combined tide and wave elevation at the cliff toe (helevation) (grey bars) for 784 

0.1 m bins of cliff elevation (a, c, e, g, i, k, m). The foreshore profile exposed at low spring tide is 785 

shown by the grey line. Total (black bars, Z component, 3 – 33 Hz) per 0.1 m elevation bin of helevation 786 

inundation (b, d, f, h, j, l, n). The dashed grey line shows the elevation of the cliff toe.  787 

 788 

Figure 9: Relationships between total HT ground motion energy over the monitoring period (Total) 789 

and foreshore and cliff characteristics: a) cliff toe elevation; b) number of steps in foreshore; c) 790 

foreshore elevation change; d) seismometer – cliff toe distance along cliff surface; e) linear distance 791 

between seismometer – cliff toe; f) mean cliff slope; and g) maximum cliff slope. Statistically 792 

significant relationships are presented (at p-value >= 0.05). Foreshore width and cliff height were 793 

also regressed against Total however were not statistically significant. 794 

 795 

Figure 10: Scatter plots of the relationship between hourly total HT ground motion energy (Totalh) 796 

and combined tide and wave height above the cliff toe (hheight) at the seven sites: a) ES01; b) ES02; c) 797 

ES03; d) ES04; e) ES05; f) ES06; g) ES07. Colour corresponds to modelled cliff toe wave height (m). 798 

 799 
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