6 research outputs found

    Reversal of Long-Term Trends in Ethane Identified from the Global Atmosphere Watch Reactive Gases Measurement Network

    Full text link
    Reactive gases play an important role in climate and air pollution issues. They control the self-cleansing capability of the troposphere, contribute to air pollution and acid deposition, regulate the lifetimes and provide tracers for deciphering sources and sinks for greenhouse gases. Within GAW, the focus is placed on long-term, high-quality observations of ozone (O3), carbon monoxide (CO), volatile organic compounds (VOC), nitrogen oxides (NOx), and sulfur dioxide (SO2). More than 100 stations worldwide carry out reactive gases measurements with data reported to two World Data Centers. The reactive gases program in GAW cooperates The WMO GAW Reactive Gases Program with regional networks and other global monitoring initiatives in order to attain a complete picture of the tropospheric chemical composition. Observations are being made by in-situ monitoring, measurements from commercial routine air-crafts (e.g. IAGOS), column observations, and from flask sampling networks. Quality control and coordination of measurements between participating stations are a primary emphasis. GAW reactive gases data in rapid delivery mode are used to evaluate operational atmospheric composition forecasts in the EU Copernicus Atmospheric Monitoring Service. Oversight of the program is provided by GAW-WMO coordinated Reactive Gases Scientific Advisory Committee (RG-SAG)

    Measurement report : Leaf-scale gas exchange of atmospheric reactive trace species (NO<sub>2</sub>, NO, O<sub>3</sub>) at a northern hardwood forest in Michigan

    No full text
    During the Program for Research on Oxidants: PHotochemistry, Emissions, and Transport (PROPHET) campaign from 21 July to 3 August 2016, field experiments on leaf-level trace gas exchange of nitric oxide (NO), nitrogen dioxide (NO2), and ozone (O3) were conducted for the first time on the native American tree species Pinus strobus (eastern white pine), Acer rubrum (red maple), Populus grandidentata (bigtooth aspen), and Quercus rubra (red oak) in a temperate hardwood forest in Michigan, USA. We measured the leaf-level trace gas exchange rates and investigated the existence of an NO2 compensation point, hypothesized based on a comparison of a previously observed average diurnal cycle of NOx (NO2 C NO) concentrations with that simulated using a multi-layer canopy exchange model. Known amounts of trace gases were introduced into a tree branch enclosure and a paired blank reference enclosure. The trace gas concentrations before and after the enclosures were measured, as well as the enclosed leaf area (single-sided) and gas flow rate to obtain the trace gas fluxes with respect to leaf surface. There was no detectable NO uptake for all tree types. The foliar NO2 and O3 uptake largely followed a diurnal cycle, correlating with that of the leaf stomatal conductance. NO2 and O3 fluxes were driven by their concentration gradient from ambient to leaf internal space. The NO2 loss rate at the leaf surface, equivalently the foliar NO2 deposition velocity toward the leaf surface, ranged from 0 to 3.6 mm s-1 for bigtooth aspen and from 0 to 0.76 mm s-1 for red oak, both of which are ∼ 90 % of the expected values based on the stomatal conductance of water. The deposition velocities for red maple and white pine ranged from 0.3 to 1.6 and from 0.01 to 1.1 mm s-1, respectively, and were lower than predicted from the stomatal conductance, implying a mesophyll resistance to the uptake. Additionally, for white pine, the extrapolated velocity at zero stomatal conductance was 0.4 ± 0.08 mm s-1, indicating a non-stomatal uptake pathway. The NO2 compensation point was = 60 ppt for all four tree species and indistinguishable from zero at the 95 % confidence level. This agrees with recent reports for several European and California tree species but contradicts some earlier experimental results where the compensation points were found to be on the order of 1 ppb or higher. Given that the sampled tree types represent 80 %-90 % of the total leaf area at this site, these results negate the previously hypothesized important role of a leaf-scale NO2 compensation point. Consequently, to reconcile these findings, further detailed comparisons between the observed and simulated in-and above-canopy NOx concentrations and the leaf-and canopy-scale NOx fluxes, using the multi-layer canopy exchange model with consideration of the leaf-scale NOx deposition velocities as well as stomatal conductances reported here, are recommended. </p

    Reversal of global atmospheric ethane and propane trends largely due to US oil and natural gas production

    Get PDF
    Non-methane hydrocarbons such as ethane are important precursors to tropospheric ozone and aerosols. Using data from a global surface network and atmospheric column observations we show that the steady decline in ethane concentrations that began in the 1970s halted between 2005 and 2010 in most of the Northern Hemisphere, and has since reversed. We calculate a yearly increase in ethane emissions in the Northern Hemisphere of 0.42 (+/-0.19) Tg/yr between mid-2009 and mid-2014. The largest increases in ethane and for the shorter-lived propane are seen over the central and eastern USA, with a spatial distribution that suggests North American oil and natural gas development as the primary source of increasing emissions. By including other co-emitted oil and natural gas non-methane hydrocarbons, we estimate a Northern Hemisphere total non-methane hydrocarbon yearly emission increase of 1.2 (+/-0.8) Tg/yr. Atmospheric chemical transport modelling suggests that these emissions could augment summertime mean surface ozone by several nanomoles per mole near oil and natural gas production regions. Methane/ethane oil and natural gas emission ratios suggest a significant increase in associated methane emissions; however, this increase is inconsistent with observed leak rates in production regions and changes in methane’s global isotopic ratio

    Characterization of the 1,1-HCl Elimination Reaction of Vibrationally Excited CD<sub>3</sub>CHFCl Molecules and Assignment of Threshold Energies for 1,1-HCl and 1,2-DCl plus 1,1-HF and 1,2-DF Elimination Reactions

    No full text
    Vibrationally excited CD<sub>3</sub>CHFCl molecules with 96 kcal mol<sup>–1</sup> of energy were generated by the recombination of CD<sub>3</sub> and CHFCl radicals in a room-temperature bath gas. The four competing unimolecular decomposition reactions, namely, 1,1-HCl and 1,2-DCl elimination and 1,1-HF and 1,2-DF elimination, were observed, and the individual rate constants were measured. The product branching fractions are 0.60, 0.27, 0.09, and 0.04 for 1,2-DCl, 1,1-HCl, 1,2-DF, and 1,1-HF elimination, respectively. Electronic structure calculations were used to define models of the four transition states. The statistical rate constants calculated from these models were compared to the experimental rate constants. The assigned threshold energies with ±2 kcal mol<sup>–1</sup> uncertainty are 60, 72, 65, and 74 kcal mol<sup>–1</sup> for the 1,2-DCl, 1,1-HCl, 1,2-DF, and 1,1-HF reactions, respectively. The loose structure of the 1,1-HX transition states, which is exemplified by the order of magnitude larger pre-exponential factor relative to the 1,2-HX elimination reactions, compensates for the high threshold energy; thus, the 1,1-HX elimination reaction rates can compete with the 1,2-HX elimination reactions for high levels of vibrational excitation in CD<sub>3</sub>CHFCl. The 1,1-HCl and 1,1-HF reactions are observed via the CD<sub>2</sub>CDF and CD<sub>2</sub>CDCl products formed from isomerization of the CD<sub>3</sub>CF and CD<sub>3</sub>CCl carbenes. These D-atom migration reactions are discussed, and the possibility of tunneling is evaluated. The transition states developed from the 1,1-HCl and 1,1-HF reactions of CD<sub>3</sub>CHFCl are compared to models for the HCl and HF elimination reactions of CHF<sub>2</sub>Cl, CHFCl<sub>2</sub>, and CH<sub>2</sub>FCl
    corecore