167 research outputs found

    GLAS 532nm Optical Detector

    Get PDF
    This report documents fabrication and testing of 532nm optical detectors. Testing procedures included 532nm quantum efficiency, detector gain, and photon counting performance, in particular, photon counting efficiency. 532nm quantum efficiency was measured to be 36% to 39% for the detectors fabricated. Detectors with a GaAs APD anode had measured gains of 12,000 to 15,000 maximum. Photon counting efficiency for the detector with an APD anode was measured to be approximately 80% with a detector gain of 11,000. Measurements made on an identical detector, not fabricated under this contract, had a photon counting efficiency exceeding 90% with a gain of 13,000. A formula is derived in which the photon counting efficiency is determined by the system preamp noise and the peak single photon pulse height which is proportional to detector gain. This formula agrees well with the measured results and indicates that a detector gain of 15,000 is sufficient to provide a counting efficiency of 99.6%

    Ribosomal intergenic spacer- and DGGE- based analyses of microbial consortia associated with liquid and particulate fractions of rumen digesta

    Get PDF
    It is well recognized that ruminal microbes develop a dynamic biofilm upon digesta particles, with some bacteria tightly adherent and others more loosely associated. However, rumen microbial diversity is commonly examined using only liquid-based fractions. To assess the biodiversity associated with the biofilms present on digesta particles, the rumen contents from four sheep, fed a diet either entirely of grass hay, or a combination of com and grass hay (70:30), were separated into three fractions: liquid (strained through cheesecloth), associated (bacteria recovered by washing particles with buffer at room temperature) and adherent (bacteria extracted with buffer containing 0.15% v/v Tween-80, and chilling). The genomic DNA from sub samples of these communities was extracted and then subjected to either RIS (Ribosomal Intergenic Spacer) analysis, or DGGE analysis of the V3-region of the 16S rRNA gene. Of the two methods, the RIS profiles appeared to provide the most diverse banding patterns with respect to both diet and fraction of digesta. The RIS-PCR products generated from the four adherent communities were then cloned and subjected to RFLP analysis. The resulting patterns provided further evidence that the adherent communities of the four animals were affected by exogenous (diet) and endogenous (host derived) parameters. Clones obtained from each adherent community were randomly selected and subjected to DNA sequence analysis. Most of the sequenced clones obtained from animals consuming an all-grass diet appear to be most similar to Clostridium, Prevotella or Selenomonas species, but the sequence identity is less than 95% in most instances. From the animals consuming a grain-based diet, the sequenced clones are most similar to the Ruminococcus, Selenomonas, and Mitsuokella. Most libraries were less than 25 percent of the sequenced clones belong to the Prevotella/Bactericides subgroups, which are the numerically dominant sequences in clone libraries prepared from whole digesta. The results reveal a relatively large population of uncharacterized bacteria potentially involved in polysaccharide degradation

    Structure of the Brd4 ET domain bound to a C-terminal motif from Ξ³-retroviral integrases reveals a conserved mechanism of interaction

    Get PDF
    The bromodomain and extraterminal domain (BET) protein family are promising therapeutic targets for a range of diseases linked to transcriptional activation, cancer, viral latency, and viral integration. Tandem bromodomains selectively tether BET proteins to chromatin by engaging cognate acetylated histone marks, and the extraterminal (ET) domain is the focal point for recruiting a range of cellular and viral proteins. BET proteins guide Ξ³-retroviral integration to transcription start sites and enhancers through bimodal interaction with chromatin and the Ξ³-retroviral integrase (IN). We report the NMR-derived solution structure of the Brd4 ET domain bound to a conserved peptide sequence from the C terminus of murine leukemia virus (MLV) IN. The complex reveals a protein–protein interaction governed by the binding-coupled folding of disordered regions in both interacting partners to form a well-structured intermolecular three-stranded Ξ² sheet. In addition, we show that a peptide comprising the ET binding motif (EBM) of MLV IN can disrupt the cognate interaction of Brd4 with NSD3, and that substitutions of Brd4 ET residues essential for binding MLV IN also impair interaction of Brd4 with a number of cellular partners involved in transcriptional regulation and chromatin remodeling. This suggests that Ξ³-retroviruses have evolved the EBM to mimic a cognate interaction motif to achieve effective integration in host chromatin. Collectively, our findings identify key structural features of the ET domain of Brd4 that allow for interactions with both cellular and viral proteins

    Altering Murine Leukemia Virus Integration Through Disruption of the Integrase and BET Protein Family Interaction

    Full text link
    We report alterations to the murine leukemia virus (MLV) integrase (IN) protein that successfully result in decreasing its integration frequency at transcription start sites and CpG islands, thereby reducing the potential for insertional activation. The host bromo and extraterminal (BET) proteins Brd2, 3 and 4 interact with the MLV IN protein primarily through the BET protein ET domain. Using solution NMR, protein interaction studies, and next generation sequencing, we showthat the C-terminal tail peptide region ofMLV IN is important for the interaction with BET proteins and that disruption of this interaction through truncation mutations affects the global targeting profile of MLV vectors. The use of the unstructured tails of gammaretroviral INs to direct association with complexes at active promoters parallels that used by histones and RNA polymerase II. Viruses bearingMLV IN C-terminal truncations can provide new avenues to improve the safety profile of gammaretroviral vectors for human gene therapy

    Abnormal Placental Development and Early Embryonic Lethality in EpCAM-Null Mice

    Get PDF
    BACKGROUND: EpCAM (CD326) is encoded by the tacstd1 gene and expressed by a variety of normal and malignant epithelial cells and some leukocytes. Results of previous in vitro experiments suggested that EpCAM is an intercellular adhesion molecule. EpCAM has been extensively studied as a potential tumor marker and immunotherapy target, and more recent studies suggest that EpCAM expression may be characteristic of cancer stem cells. METHODOLOGY/PRINCIPAL FINDINGS: To gain insights into EpCAM function in vivo, we generated EpCAM -/- mice utilizing an embryonic stem cell line with a tacstd1 allele that had been disrupted. Gene trapping resulted in a protein comprised of the N-terminus of EpCAM encoded by 2 exons of the tacstd1 gene fused in frame to betageo. EpCAM +/- mice were viable and fertile and exhibited no obvious abnormalities. Examination of EpCAM +/- embryos revealed that betageo was expressed in several epithelial structures including developing ears (otocysts), eyes, branchial arches, gut, apical ectodermal ridges, lungs, pancreas, hair follicles and others. All EpCAM -/- mice died in utero by E12.5, and were small, developmentally delayed, and displayed prominent placental abnormalities. In developing placentas, EpCAM was expressed throughout the labyrinthine layer and by spongiotrophoblasts as well. Placentas of EpCAM -/- embryos were compact, with thin labyrinthine layers lacking prominent vascularity. Parietal trophoblast giant cells were also dramatically reduced in EpCAM -/- placentas. CONCLUSION: EpCAM was required for differentiation or survival of parietal trophoblast giant cells, normal development of the placental labyrinth and establishment of a competent maternal-fetal circulation. The findings in EpCAM-reporter mice suggest involvement of this molecule in development of vital organs including the gut, kidneys, pancreas, lungs, eyes, and limbs

    Human cellular restriction factors that target HIV-1 replication

    Get PDF
    Recent findings have highlighted roles played by innate cellular factors in restricting intracellular viral replication. In this review, we discuss in brief the activities of apolipoprotein B mRNA-editing enzyme 3G (APOBEC3G), bone marrow stromal cell antigen 2 (BST-2), cyclophilin A, tripartite motif protein 5 alpha (Trim5Ξ±), and cellular microRNAs as examples of host restriction factors that target HIV-1. We point to countermeasures encoded by HIV-1 for moderating the potency of these cellular restriction functions
    • …
    corecore