240 research outputs found

    Mechanical properties of caco3 extracted from cockle shell with high density polyethylene (HDPE) for biomaterials in bone substitute application

    Get PDF
    This study was conducted to produce CaCO3 powder extracted from cockle shells as bioceramic materials which later combined with high density polyethylene (HDPE) as the polymer to produce composite as the final product. For CaCO3 clarification, the powder form of bioceramics was analyzed using FTIR, SEM and EDX analyses. Then, the composites produced were tested for mechanical properties via tensile and hardness tests. Firstly, the wasted cockle shells were all washed to remove dirts and soaked in regular water overnight before left to dry at room temperature. Then, they were all ground up between range 100 – 200 µm several times until the required size were obtained. The spectrum for FTIR showed identical result as previous work at reading 857.22cm-1 which represent vibrational bonds that can be attributed to the characteristics of external plane bending vibration of carbonate. After the confirmation, it was added to the melted HDPE to produce stronger composite via injection moulding method. Injection moulding process was to produce the sample into the shape of dumbbell to perform mechanical tests, tensile and hardness test with three parameters for each weight ratio. It could be concluded that pressure, velocity and temperature affecting the hardness of samples. In this research, the greatest value of Young’s modulus and maximum force which are 852.2 MPa and 271.457 kN, respectively. In conclusion, cockle shell could become great biomaterial as it provide good in mechanical properties. Furthermore, the source also abundantly available and with the fully usage of this waste to something more useful, it is able to reduce contamination to the earth. Then, the combination with any polymer is able to produce strong composite that could apply in any field. For this research, the composite is focus in biomaterial usage, especially in orthopaedic field for bone implant. For instance, CaCO3 are proved to be function at higher temperature, and further future works might be required to search the maximum temperature that this material could achieve

    Cobalt oxide-modified titanium dioxide nanoparticle photocatalyst for degradation of 2,4-dichlorophenoxyacetic acid

    Get PDF
    2,4-dichlorophenoxyacetic acid (2,4-D) has been recognized as a possibly carcinogenic compound to human, therefore, 2,4-D should be treated before it is discharged to the environment. Photocatalytic degradation of 2,4-D has been proposed as one of the best methods that offer environmentally safe process. In the present research, titanium dioxide (TiO2) was modified with cobalt oxide (CoO) and tested for photocatalytic degradation of 2,4-D under UV light irradiation. Different amounts of CoO (0.1, 0.5, 1 and 5 mol%) were added onto TiO2 by an impregnation method. The photocatalytic reaction was monitored and analyzed by measurement of 2,4-D absorbance using UV spectrophotometer. After 1 h photocatalytic reaction, it was confirmed that the sample with low loading of 0.1 mol% gave the highest photocatalytic activity among the bare and modified TiO2 photocatalysts. The photocatalytic activity was decreased with the increase of CoO loading, suggesting that the optimum amount of CoO was an important factor to improve the performance of TiO2. Based on fluorescence spectroscopy, such addition of CoO resulted in the reduced emission intensity, which showed the successful decrease in the electron-hole recombination

    Data visualization of temporal ozone pollution between urban and sub-urban locations in Selangor Malaysia

    Get PDF
    In Malaysian environment, ground level zone has been reported as one of the most important pollutants that contribute to air quality degradation. The odourless and invisible nature of the pollutant has caused problems for individuals to realize and notice the existence of Ozone pollution in the environment. Thus, this study was conducted with the aim to assess and visualize the occurrence of potential Ozone pollution severity of two chosen locations in Selangor, Malaysia: Shah Alam (urban) and Banting (sub-urban). Data visualization analytics were employed using Ozone exceedances and Principal Component Analysis (PCA). The study results have shown an increasing pattern of Ozone pollution occurrence with several modes of distinct diurnal variations at the locations. The study also provides strong insights that Banting might experience a higher potential for Ozone pollution severity compared to Shah Alam.Keywords: ozone pollution; air quality; data visualization; data analytics; principalcomponent analysis

    Eccentric connectivity index of some chemical trees

    Get PDF
    Let G = (V, E) be a simple connected molecular graph. In such a simple molecular graph, vertices represent atoms and edges represent chemical bonds, we denoted the sets of vertices and edges by V(G) and E(G), respectively. If d(u, v) be the notation of distance between vertices u, v ε V(G) and is defined as the length of a shortest path connecting them. Then, the eccentricity connectivity index of a molecular graph G is defined as ζ(G) = Σ vεv(G) deg(v)ec(v), where deg(v) is degree of a vertex v ε V(G), and is defined as the number of adjacent vertices with v. ec(v) is eccentricity of a vertex v ε V(G), and is defined as the length of a maximal path connecting to another vertex of v. In this paper, we establish the general formulas for the eccentricity connectivity index of some classes of chemical trees

    Caputo-fabrizio time fractional derivative applied to visco elastic MHD fluid flow in the porous medium

    Get PDF
    In this paper the laminar fluid flow in the axially symmetric porous cylindrical channel subjected to the magnetic field was studied. Fluid model was non-Newtonian and visco elastic. The effects of magnetic field and pressure gradient on the fluid velocity were studied by using a new trend of fractional derivative without singular kernel. The governing equations consisted of fractional partial differential equations based on the Caputo-Fabrizio new time-fractional derivatives NFDt. Velocity profiles for various fractional parameter a, Hartmann number, permeability parameter and elasticity were reported. The fluid velocity inside the cylindrical artery decreased with respect to Hartmann number, permeability parameter and elasticity. The results obtained from the fractional derivative model are significantly different from those of the ordinary model

    Parametric Study on the Compact G Shaped Monopole Antenna for 2.4 GHz and 5.2 GHz Application

    Get PDF
    Abstract—This paper describes the design of a compact printed microstrip G-shaped monopole antenna for wireless local area network (WLAN application). The antenna has G-shaped resonating element which is designed for the two resonance frequencies at 2.4GHz and 5.2GHz respectively, which are the operating bands for WLAN application. The antenna is constructed by a non-conductor backed G-shaped strip with a mircostrip feed line. The dual band performance can be easily achieved by finetuning the length of the resonant path. The antenna is designed and simulated by using Computer Simulation Technology (CST) Studio simulation software. The parametric study with five different ground lengths had been done using parametric sweep. The the measurement results will be compared and analyzed with the simulated antenna
    corecore