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Abstract. Polymer flood is known as the most important enhanced oil recovery technology due 

to its various advantageous and relatively cheaper price. However, it comes with associated 

problems of polymer adsorption that leads to injectivity loss. This work aims in studying 

various parameters that may affect the ATBS/ Acrylamide copolymer adsorption in a porous 

medium to optimize the polymer scheme. Synthetic D brine with D sand sample was mixed 

and tested in static and dynamic condition. These tests were conducted at room temperature 

and 90oC whereby the core flooding experiments were conducted with varied flowrate through 

Berea Sand Core sample. Results show that a higher brine salinity and a longer aging time leads 

to higher adsorption rate whereas adsorption static test conducted at replicated reservoir 

condition of 90oC resulted in lower adsorption capacity than at room temperature. Also, static 

adsorption was found to be higher than the dynamic adsorption due to the changes in the 

specific surface area and the extent of mechanical retention present in the dynamic core flood 

experiment. In conclusion, the type of polymer used in polymer flooding must be carefully 

chosen to serve the need for a specific reservoir condition so that the adsorption phenomenon 

is minimized. 

 

 

1. Introduction 

Polymer flooding appears to be one of the most attractive and promising EOR techniques owing to the 

abundant resources of polymer plus relatively cheaper price compared with other surfactants. In the 

polymer flooding method, water-soluble polymers increase the viscosity leading to a more efficient 

displacement of moderately viscous oils [1,2]. This polymer will be retained in the porous medium to 

cause some reduction of the rock permeability, which can contribute to the oil recovery mechanism. In 

this work, ATBS containing polyacrylamides copolymer (see Figure 1(a)) with proprietary additives 

that show the best resistance to radical and thermal degradation of up to 110oC was chosen as the tested 

polymer considering the field parameter such as temperature and salinity [3]. Posthydrolyzed 

polyacrylamides are composed of a wide range of anionic chains, and this acrylamides sodium acrylate 

copolymer results in a polymer with a more even charge distribution along the backbone that is vital for 

the behaviour of the polymers in an aqueous solution, especially in the presence of divalent cations while 

the neighboring effect offered by ATBS provides tolerance to divalent containing brines and protection 
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to hydrolysis for higher temperature [1,3,4]. 

However, excessive polymer retention resulted in a loss to rock by adsorption, entrapment, salt 

reactions will eventually cause loss of injectivity and causing a delay in polymer propagation through 

porous media [5-8]. It is postulated that there may be significant interactions between the transported 

polymer molecules and the porous medium where such interactions caused the polymer to be 

unnecessarily retained in the porous medium. This may lead to the formation of a bank of injection fluid 

wholly or partially denuded of the polymer. Clearly, this bank of fluid will have a viscosity which is 

much lower than the injected polymer solution, and this will generally reduce the efficiency of the 

polymer flood [9]. 

Generally, the retention of polymer tends to reduce oil recovery despite the permeability reduction 

contribution in aiding the oil recovery. In fact, the level of polymer retention is one of the key factors in 

determining the economic viability of a polymer flood. There are three main retention mechanisms 

which are thought to act when polymer solutions flow through porous media which are polymer 

adsorption; mechanical entrapment; and hydrodynamic retention as suggested by [9] in Figure 1(b). 

 

             
(a)                                                                         (b) 

Figure 1. (a) Example of acrylamide- ATBS copolymer [4] and (b) Polymer retention mechanism in 

porous media [9]. 

 

Polymer adsorption may be defined as the interaction between the polymer molecules and the solid 

surface-as facilitated by the solvent which caused the polymer molecules to be bound to the surface of 

the solid i.e. polymer occupies surface adsorption sites; mainly by physical adsorption - Van der Waal’s 

and hydrogen bonding; rather than by chemisorption, in which full chemical bonds are formed between 

the molecule and the surface [9]. Basically, it was observed that a higher levels of adsorption achieved 

when a larger surface area available. Evidently, researchers observed there are further complications 

within a consolidated (or unconsolidated) porous medium in that there may be regions of the solid 

surface that cannot be accessed by the polymer where these molecules generally are adsorbed onto the 

rock surface by the mean of an overall low free energy [10-12]. 

Retention by mechanical entrapment is occurring when larger polymer molecules become lodged in 

narrow flow channels [5,6] as shown in Figure 1b) along with the other retention mechanisms. This 

mechanism has been studied by several authors [5,6,13-15]. As the polymer solution passed through this 

complex network, the molecules would take various routes and some molecules would be trapped in the 

narrow pores. These would block, and flows in these elements would consequently reduce, probably 

trapping more molecules upstream of the blockage. This mechanism is very similar to the well-known 

phenomenon of deep-bed filtration [16]. 

Hydrodynamic retention of polymer is the least well defined and understood retention mechanism. 

These were concluded from experimental observation in which after steady state was reached in a 

polymer retention experiment in a core, the total level of retention changed when the fluid flow rate was 

adjusted to a new value [5,6,17-19]. 
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In this project, the adsorption phenomena resulting in loss of polymer quantity during the enhanced 

oil recovery process is studied. Several factors that may affect this adsorption phenomena such as brine 

concentration, temperature, the type of lithology of the rock formation, aging time in static and dynamic 

condition was further investigated in this project. From this investigation, the problem of loss of polymer 

during the EOR process can be minimized leading to a more efficient displacement. 

Static adsorption has been determined by using the final concentration of each sample. The final 

concentration was read from the linear equation generated from the standard curve (generated from UV-

Vis analysis) of each reading. Polymer adsorption was determined using the following equation: 

 

(g)rock  ofWeight 

 conc)polymer  final-concpolymer  (initialpolymer  Vol.of
 mg/g ,adsorptionPolymer         (1) 

 

Dynamic adsorption has also been determined by using the final concentration of each sample read 

from the linear equation that resulted from the standard curve of each reading. 

 

Polymer adsorbed (mg) = Theoretical amount of polymer (mg) – Actual amount of polymer (mg) 

Theoretical amount of polymer (mg) = Volume polymer injected (L) x Initial concentration (mg/L) 

Actual amount of polymer (mg) = Volume polymer collected (L) x Core measured polymer (mg/L) 

Polymer adsorption (mg/g) = polymer adsorbed (mg) / weight of rock (g) 

 

Researchers claimed that for a polymer-retention value more than 200µg/g, polymer retention can 

have a serious impact on the oil-displacement rate and the economics of polymer flooding [8]. 
 

2. Methodology 

This work aims in studying various parameters that may affect the ATBS/ Acrylamide copolymer 

adsorption in porous medium including temperature, brine salinity, aging time and the lithology of a 

sand sample in the effort of optimizing the polymer scheme. Synthetic D brine of various salinity with 

D sand sample which taken at various depth was mixed and tested in static and dynamic (core flooding) 

condition. Two liters of D synthetic brine containing 35000 ppm and 30000 ppm of NaCl respectively 

have been prepared with the composition of original D injection water is shown in Table 1. AN 125 SH 

polymer (Co-polymers of ATBS and acrylamide) has been prepared by adding 1g of polymer into 199g 

of water by using a mixer as per the polymer solution preparation. For the static adsorption, the large 

surface area of the sand was being in static condition with the polymer. These tests were conducted at 

room temperature and 90oC where the mixed rock/ solution samples were analyzed using UV-Visible 

so that the adsorption rate can be determined (Figure 2). 

Dynamic adsorption was studied whereby the polymer solution will move throughout the core in the 

core flooding equipment with a varied flow rate of 0.5 ml/min and 0.15 ml/m through Berea Sand Core 

sample. The dimensional of the core itself needs to be measured (1” x 6”) and the pressure and the 

temperature of the core flood unit were set to replicate the reservoir condition (temperature of 25oC and 

90oC, confining pressure of 2000 psi and back pressure regulator of 50 psi). Effluent from the core 

holder was collected to measure the adsorption by using the UV-visible equipment (Refer Figure 3). 

 

Table 1. The D injection water composition. 
 

Chemical CaCl2 MgCl2 SrCl2 Na2SO4 NaCl KCl NaHCO3 

Weight (g/2L) 2.4130 20.3634 0.0258 33.0864 7.6916 1.2378 0.4490 
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Figure 2. Static and dynamic adsorption test. 

 

 

Figure 3. Dynamic adsorption study in core flooding experiment. 

 

3. Result and Discussion 

3.1 Effect of different brine salinity on the polymer adsorption  

Based on results shown in Figure 4, polymer adsorption increases with increase in salinity which is in 

agreement with [20]. This may be due to the attraction between a different charge of the polymer and 

the rock surface which resulted in higher ionic strength between the solutions with the rock surface for 

higher salinity. Since the rock surface also contains the cationic substances, the engagement between 

the different ionic will be higher than the 30000 NaCl ppm injection water. The rock surface possesses 

the negative surface charge and will attract the positive charge from the solutions sample. According to 
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[20], as the salt concentration increases, charge shielding takes place due to positively charged ions of 

the salt (Na+); thus the hydrodynamic radius of polymer molecule reduces. Due to this intermolecular 

interaction, electrostatic repulsion in the polymer solution decreases resulted in an increased in 

adsorption capacity of polymer solution. 

 
Figure 4. Effect of different brine concentration on polymer adsorption. 

 

3.2Eeffect of the aging time on the polymer adsorption  

The polymer solution was tested at the static condition in the various sand sample with 35000 ppm and 

30000 ppm brine respectively for 7,14 and 21 days of aging time (Figure 5). It was clearly observed that 

higher adsorption of the polymer solution was achieved with the increasing of aging time. This is 

because of more contact time of polymer solution with the rock surface. This behavior is also expected 

by polymer hydrolysis as explained by [21,22]. They found that the viscosity was increased with 

increasing aging time and this may be explained by acrylamide moieties that hydrolyzed to negatively 

charged acrylate, increasing the intra-chain charge repulsion, thus causing an increase in viscosity hence 

higher adsorption was observed. 

 

 
(a)                                                                    (b) 

Figure 5. Effect of the aging time on polymer adsorption in (a) 35 000 ppm and (b) 30 000 ppm NaCl 

concentration. 
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3.3 Effect of the different sand sample on the polymer adsorption  

The sand sample used in this test was acquired at the depth of 1555 m, 1558 m and 1559 m from D well. 

The lithology investigation of the sand sample revealed all sand sample having relatively almost the 

same mineralogy composition of all depth; the amount of carbonates around 2.21 wt%, total clays about 

14.35 wt%, feldspar about 2.45 wt% and quartz around 81 wt% and no pyrite and halite stated on the 

core sample. Hence, the effect of the different depth of sand samples did not give too much impact on 

adsorption activities. It is worth note that the effect of pressure and also the temperature for every depth 

of sand sample were not taken into considerations in these experiments but the results shown were 

entirely based on the mineralogy condition. Research by [23] revealed a small amount of clay 

(predominately negative charge of the clay mineral) can cause a significant increase in polymer 

retention. It was observed experimentally that in general, the deeper the acquired sand sample, the higher 

retention rate for all parameters being studied, though this worth further investigation (Figure 6). This 

may due to the deeper sand sample have a higher specific surface area that resulted in higher adsorption 

as explained by [24]. Hence, it is worth to further study this effect by varying the amount of clay and 

specific surface area. 

 

 
(a)                                                                         (b) 

Figure 6. Effect the sand sample mineralogy on polymer adsorption in (a) 35 000 ppm and  

(b) 30 000 ppm NaCl concentration. 

 

 

3.4 Effect of temperature on the polymer adsorption  

The polymer solution was further tested at different temperatures of room temperature and 90oC to 

replicate the actual D reservoir temperature. It can be seen from Figure 7 that, lower adsorption was 

achieved in the high temperature (i.e. reservoir temperature of 90ºC) than the room temperature. 

According to [25] and [26], the high temperature causes the polymer structure to degrade and the bond 

of the structure may break leading to the polymer become lighter and it may flow to the porous media 

smoothly; hence the polymer is less adsorbed. The mothers chained in the polymer were broke causing 

the ionic strength between the chained also become weaker. Thus, less adsorption or attraction occurred 

due to the less ionic strength engagement.  This may be explained by the combination of electrostatic 

forces and molecular forces (like hydrogen bond, Van der Waals, hydrophobicity, etc.) causes both 

anionic (ATBS) and non-ionic (acrylamide) polymers adsorption to decrease with temperature. The 

high-temperature increased negative charge on the rock surface hence high repulsion (with anionic 

monomers-ATBS) occurs which lowers adsorption. In addition to that, non-ionic polymers (acylamide) 

adsorption is related to hydrogen bond, therefore, an increase in temperature can easily break the bond 

causing adsorption to decrease [27]. 
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Figure 7. Effect of reservoir’s temperature on polymer adsorption. 

 

3.5 Polymer adsorption in dynamic condition   

A different flow rate of 0.15 ml/min and 0.5 ml/min has been studied for the dynamic adsorption test. 

Based on the result shown in Figure 8, a lower flow rate will give the higher adsorption. This is because 

the low flow rate giving more contact time for the polymer passing through the porous media, hence 

giving more opportunity for the polymer to stick and retain onto the porous medium. However, dynamic 

adsorption/ retention in a porous medium is a complex process to study than static adsorption since the 

polymer may be retained in the pore structure by other means, for example in dead-end pores or in pore 

throats.  

By comparing the adsorption for both static and dynamic condition, it is obvious that the static 

adsorption is far higher than the dynamic adsorption by the factor of more than 1000 times. Again, this 

may be explained by the time contact between the polymer solution and the rock surface. Longer contact 

time was experienced by the polymer solution with the rock samples in the static adsorption than in the 

dynamic condition through the core sample. The static test allowed higher retention time as the rock/ 

polymer was in static (no motion) which eventually resulted in higher adsorption. In addition to that, the 

actual reservoir crushed core was used in the static test which means higher surface area per unit volume 

for polymer adsorption to take place. Dynamic adsorption/ retention in a porous medium is far more 

complex than the static adsorption since the polymer may be retained in the pore structure e.g. in dead-

end pores or in pore throats; in addition to adsorption onto the surface of the rock. The presence of 

inaccessible pore volume (IAPV) accelerates the polymer through the porous rock because the large 

ATBS molecules cannot penetrate into all pore space that is available [25]. 

 

 

(a)                                                                            (b) 

Figure 8. Effect of the (a) static and (b) dynamic adsorption in 35 000 ppm NaCl concentration. 
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4. Conclusions 

It has been shown that all parameters studied in this work have an effect on the adsorption phenomena. 

Higher salinity, longer aging time, lower temperature have led to higher adsorption rate. Different 

mineralogy may also affect the polymer adsorption due to different charge attractions may occur and 

cause the adsorption. However, the effect of the sand sample in this study is minor because the entire 

sand sample was taken at the relatively same depth of 1555 to 1559 m in which lithology analysis 

revealed they are having almost the same mineralogy. The factors influencing polymer adsorption, 

mechanical entrapment, and hydrodynamic retention were identified and studied in this work. In 

summary, the flow of polymer solutions through porous media is a complex phenomenon which requires 

a detailed understanding of retention, flow capacity alteration, as well as inaccessible pore volume. 

Hence, an estimation of these parameters is crucial for economic evaluation and slug design for a 

successful implementation of polymer flooding EOR.  
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