363 research outputs found
Femtosecond real-time probing of reactions. II. The dissociation reaction of ICN
Experimental results obtained for the dissociation reaction ICN^*→[I⋅⋅⋅CN]^(‡*)→I+CN using femtosecond transition‐state spectroscopy (FTS) are presented. The process of the I–CN bond breaking is clocked, and the transition states of the reaction are observed in real time. From the clocking experiments, a "dissociation" time of 205±30 fs was measured and was related to the length scale of the potential. The transition states live for only ∼50 fs or less, and from the observed transients we deduce some characteristics of the relevant potential energy surfaces (PES). These FTS experiments are discussed in relation to both classical and quantum mechanical models of the dynamical motion, including features of the femtosecondcoherence and alignment of fragments during recoil. The observations are related to the radial and angular properties of the PES
Femtosecond real-time probing of reactions. I. The technique
When a chemical bond is broken in a direct dissociationreaction, the process is so rapid that it has generally been considered instantaneous and therefore unobservable. But the fragments formed interact with one another for times on the order of 10^(−13) s after the photon has been absorbed. On this time scale the system passes through intermediate transition configurations; the totality of such configurations have been, in the recent literature, designated as "transition states." Femtosecond transition‐state spectroscopy (FTS) is a real‐time technique for probing chemical reactions. It allows the direct observation of a molecule in the process of falling apart or in the process of formation. In this paper, the first in a series on femtosecond real‐time probing of reactions, we examine the technique in detail. The concept of FTS is explored, and the interrelationship between the dynamics of chemical reactions and molecular potential energy surfaces is considered. The experimental method, which requires the generation of spectrally tunable femtosecond optical pulses, is detailed. Illustrative results from FTS experiments for several elementary reactions are presented, and we describe methods for relating these results to the potential energy surface(s)
Retos y experiencias empresariales (casos colombianos)
Este texto está fundamentado en la necesidad de contribuir a la formación universitaria y empresarial, a través de la exposición de casos de empresas colombianas, que con su experiencia y crecimiento se constituyen en una realidad, objeto de estudio, propicia para los cursos de marketing que ofrecen las instituciones y centros de estudio. Cada caso expone una problemática de mercadeo diferente y al final se cierra con una sección de reflexión como apoyo de la estrategia de enseñanza-aprendizaje
The natural cardioprotective particle HDL modulates connexin43 gap junction channels
Aims High-density lipoprotein (HDL) is known for its cardioprotective properties independent from its cholesterol transport activity. These properties are mediated by activation of kinases such as protein kinase C (PKC). Connexin43 (Cx43) is a gap junction protein present in ventricular cardiomyocytes. PKC-dependent phosphorylation modifies Cx43 gap junction channel properties and is involved in cardioprotection. We hypothesized that cardioprotective properties of HDL may be mediated in part by affecting Cx43 gap junction channels. Methods and results Neonatal rat cardiomyocytes were treated with HDL and Cx43 phosphorylation was evaluated by western blotting and immunofluorescence. We found that HDL promoted phosphorylation of Cx43 with a maximal induction at 5 min, which was inhibited by pre-treatment with various PKC inhibitors. Sphingosine-1-phosphate (S1P), a component of HDL, induced effects that were similar to those of HDL. These compounds significantly reduced diffusion of fluorescent dye among cardiomyocytes (∼50%) which could be prevented by PKC inhibition. As observed during optical recordings of transmembrane voltage, HDL and S1P depressed impulse conduction only minimally (<5%). Moreover, 5 min of HDL and S1P treatment at the onset of reperfusion significantly reduced infarct size (∼50%) in response to 30 min ischaemia in ex vivo experiments. Conclusion Short-term treatment with HDL or S1P induces phosphorylation of Cx43 by a PKC-dependent pathway. HDL-induced phosphorylation of Cx43 reduced the diffusion of large tracer molecules between cells, whereas impulse conduction was maintained. Moreover, 5 min treatment with HDL confers cardioprotection against ischaemia/reperfusion injury. These results link Cx43 for the first time to the short-term cardioprotective effects of HD
Massive Accumulation of Myofibroblasts in the Critical Isthmus Is Associated With Ventricular Tachycardia Inducibility in Post-Infarct Swine Heart
Objectives In this study the authors determined the extent of cellular infiltration and dispersion, and regional vascularization in electrophysiologically (EP) defined zones in post–myocardial infarction (MI) swine ventricle. Background The critical isthmus (CI) in post-MI re-entrant ventricular tachycardia (VT) is a target for catheter ablation. In vitro evidence suggests that myofibroblasts (MFB) within the scar border zone (BZ) may increase the susceptibility to slow conduction and VT, but whether this occurs in vivo remains unproven. Methods Six weeks after mid–left anterior descending coronary artery occlusion, EP catheter-based mapping was used to assess susceptibility to VT induction. EP data were correlated with detailed cellular profiling of ventricular zones using immunohistochemistry and spatial distribution analysis of cardiomyocytes, fibroblasts, MFB, and vascularization. Results In pigs with induced sustained monomorphic VT (mean cycle length: 353 ± 89 ms; n = 6) the area of scar that consisted of the BZ (i.e., between the normal and the low-voltage area identified by substrate mapping) was greater in VT-inducible hearts (iVT) than in noninducible hearts (non-VT) (p 100 times that in normal myocardium and >5 times higher than that in the BZ in non-VT hearts) and by a 1.7-fold increase in blood vessel density within the dense scar region extending towards the CI. Sites of local abnormal ventricular activity potentials exhibited cellularity and vascularization that were intermediate to the CI in iVT and BZ in non-VT hearts. Conclusions The authors reported the first cellular analysis of the VT CI following an EP-based zonal analysis of iVT and non-VT hearts in pigs post-MI. The data suggested that VT susceptibility was defined by a remarkable number of MFB in the VT CI, which appeared to bridge the few remaining dispersed clusters of cardiomyocytes. These findings define the cellular substrate for the proarrhythmic slow conduction pathway
Modification of actin fibers changes the electrical phenotype of cardiac myofibroblasts
Background: Slow conduction and ectopic activity are major determinants of cardiac arrhythmogenesis. Both of these conditions can be elicited by myofibroblasts (MFBs) following establishment of heterocellular gap junctional coupling with cardiomyocytes. MFBs appear during structural remodeling of the heart and are characterized by the expression of α-smooth muscle actin (α-SMA) containing stress fibers. In this study, we investigated whether pharmacological interference with the actin cytoskeleton affects myofibroblast arrhythmogeneicity.
Methods: Experiments were performed with patterned growth strands of neonatal rat ventricular cardiomyocytes coated with cardiac MFBs. Impulse conduction velocity (θ) and maximal upstroke velocities of propagated action potentials (dV/dtmax), expressed as % action potential amplitude change (%APA) per ms, were measured optically using voltage sensitive dyes. Actin was destabilized by latrunculin B (LtB) and cytochalasin D and stabilized with jasplakinolide. Data are given as mean ± S.D. (n = 5-22). Single cell electrophysiology was assessed using standard patch-clamp techniques.
Results: As revealed by immunocytochemistry, exposure of MFBs to LtB (0.01-10 μmol/L) profoundly disrupted stress fibers which led to drastic changes in cell morphology with MFBs assuming an astrocyte-like shape. In control cardiomyocyte strands (no MFB coat), LtB had negligible effects on θ and dV/dtmax. In contrast, LtB applied to MFB-coated strands increased θ dose-dependently from 197 ± 35 mm/s to 344 ± 26 mm/s and dV/dtmax from 38 ± 5 to 78 ± 3% APA/ms, i.e., to values virtually identical to those of cardiomyocyte control strands (339 ± 24 mm/s; 77 ± 3% APA/ms). Highly similar results were obtained when exposing the preparations to cytochalasin D. In contrast, stabilization of actin with increasing concentrations of jasplakinolide exerted no significant effects on impulse conduction characteristics in MFB-coated strands. Whole-cell patch-clamp experiments showed that LtB hyperpolarized MFBs from -25 mV to -50 mV, thus limiting their depolarizing effect on cardiomyocytes which was shown before to cause arrhythmogenic slow conduction and ectopic activity.
Conclusion: Pharmacological interference with the actin cytoskeleton of cardiac MFBs affects their electrophysiological phenotype to such an extent that they loose their detrimental effects on cardiomyocyte electrophysiology. This result might form a basis for the development of therapeutic strategies aimed at limiting the arrhythmogenic potential of MFBs
Effects of external loads on postural sway during quiet stance in adults aged 20–80 years
The purpose of this study was to investigate the effects of holding external loads on postural sway during upright stance across age decades. Sixty-five healthy adults (females, n = 35), aged 18–80 years were assessed in four conditions; (1) standing without holding a load, holding a load corresponding to 5% body mass in the (2) left hand, (3) right hand and (4) both hands. The centre of pressure (COP) path length and anteroposterior and mediolateral COP displacement were used to indirectly assess postural sway. External loading elicited reductions in COP measures of postural sway in older age groups only (P 0.05). Holding external loads during standing is relevant to many activities of daily living (i.e. holding groceries). The reduction in postural sway may suggest this type of loading has a stabilising effect during quiet standing among older adults
Resveratrol reduces myofibroblast arrhythmogenicity
Background:
Among grape skin polyphenols, trans-resveratrol (RES) has been reported to slow the development of cardiac fibrosis and to affect myofibroblast (MFB) differentiation. Because MFBs induce slow conduction and ectopic activity following heterocellular gap junctional coupling to cardiomyocytes, we investigated whether RES and its main metabolites affect arrhythmogenic cardiomyocyte-MFB interactions.
Methods:
Experiments were performed with patterned growth strands of neonatal rat ventricular cardiomyocytes coated with cardiac MFBs. Impulse propagation characteristics were measured optically using voltage-sensitive dyes. Long-term video recordings served to characterize drug-related effects on ectopic activity. Data are given as means ± S.D. (n = 4–20).
Results:
Exposure of pure cardiomyocyte strands to RES at concentrations up to 10 µmol/L had no significant effects on impulse conduction velocity (θ) and maximal action potential upstroke velocities (dV/dtmax). By contrast, in MFB-coated strands exhibiting slow conduction, RES enhanced θ with an EC50 of ~10 nmol/L from 226 ± 38 to 344 ± 24 mm/s and dV/dtmax from 48 ± 7 to 69 ± 2%APA/ms, i.e., to values of pure cardiomyocyte strands (347 ± 33 mm/s; 75 ± 4%APA/ms). Moreover, RES led to a reduction of ectopic activity over the course of several hours in heterocellular preparations. RES is metabolized quickly in the body; therefore, we tested the main known metabolites for functional effects and found them similarly effective in normalizing conduction with EC50s of ~10 nmol/L (3-OH-RES), ~20 nmol/L (RES-3-O-β-glucuronide) and ~10 nmol/L (RES-sulfate), respectively. At these concentrations, neither RES nor its metabolites had any effects on MFB morphology and α-smooth muscle actin expression. This suggests that the antiarrhythmic effects observed were based on mechanisms different from a change in MFB phenotype.
Conclusions:
The results demonstrate that RES counteracts MFB-dependent arrhythmogenic slow conduction and ectopic activity at physiologically relevant concentrations. Because RES is rapidly metabolized following intestinal absorption, the finding of equal antiarrhythmic effectiveness of the main RES metabolites warrants their inclusion in future studies of potentially beneficial effects of these substances on the heart
Femtosecond real-time probing of reactions. IV. The reactions of alkali halides
The photodissociation dynamics of some alkali halides are explored via the method of femtosecond transition-state spectroscopy (FTS). The alkali halide dissociation reaction is influenced by the interaction between the covalent and the ground state ionic potential energy surfaces (PES), which cross at a certain internuclear separation. Depending upon the adiabaticity of the PES, the dissociating fragments may be trapped in a well formed by the avoided crossing of these surfaces. Here, we detail the FTS results of this class of reactions, with particular focus on the reaction of sodium iodide: NaI*-->[Na---I]°* -->Na+I. As in our first report [T. S. Rose, M. J. Rosker, and A. H. Zewail, J. Chem. Phys. 88, 6672 (1988)], we observe the dynamical motion of the wave packet along the reaction coordinate and the crossing between the covalent and ionic surfaces. The studies presented here characterize the effects of various experimental parameters, including pump and probe wavelengths, on the dynamics of the dissociation and its detection. Comparisons of the results with classical and quantum mechanical calculations are also presented
- …
