40 research outputs found

    Safety and effectiveness of the transsubclavian approach for transcatheter aortic valve implantation with the 14-F CoreValve Evolut R device

    No full text
    International audienceAims - In addition to the transfemoral route, common approaches for transcatheter aortic valve implantation (TAVI) are the transapical and transaortic ones. Yet, these are associated with morbidity. The transsubclavian approach (TSA) is an alternative to minimize invasiveness. Methods - Fifteen consecutive patients underwent TAVI via TSA using the CoreValve Evolut R. The 14F delivery system without sheath was directly introduced into the artery. Results - Success was 100%; contrast volume was 99.4 ± 29.58 ml. Patients were extubated after 1.66 ± 0.89 h. Hemoglobin drop was 0.64 ± 0.28 g/dl. There were no complications. Hospital stay was 4.53 ± 1.24 days: 11 patients were discharged home, the remainder to rehabilitation. Conclusion - TSA is associated with limited morbidity, early patient mobilization, short hospitalization

    Effect of Levosimendan on Low Cardiac Output Syndrome in Patients With Low Ejection Fraction Undergoing Coronary Artery Bypass Grafting With Cardiopulmonary Bypass

    No full text
    International audienceImportance: Low cardiac output syndrome after cardiac surgery is associated with high morbidity and mortality in patients with impaired left ventricular function.Objective: To assess the ability of preoperative levosimendan to prevent postoperative low cardiac output syndrome.Design, setting, and participants: Randomized, double-blind, placebo-controlled trial conducted in 13 French cardiac surgical centers. Patients with a left ventricular ejection fraction less than or equal to 40% and scheduled for isolated or combined coronary artery bypass grafting with cardiopulmonary bypass were enrolled from June 2013 until May 2015 and followed during 6 months (last follow-up, November 30, 2015).Interventions: Patients were assigned to a 24-hour infusion of levosimendan 0.1 ”g/kg/min (n = 167) or placebo (n = 168) initiated after anesthetic induction.Main outcomes and measures: Composite end point reflecting low cardiac output syndrome with need for a catecholamine infusion 48 hours after study drug initiation, need for a left ventricular mechanical assist device or failure to wean from it at 96 hours after study drug initiation when the device was inserted preoperatively, or need for renal replacement therapy at any time postoperatively. It was hypothesized that levosimendan would reduce the incidence of this composite end point by 15% in comparison with placebo.Results: Among 336 randomized patients (mean age, 68 years; 16% women), 333 completed the trial. The primary end point occurred in 87 patients (52%) in the levosimendan group and 101 patients (61%) in the placebo group (absolute risk difference taking into account center effect, -7% [95% CI, -17% to 3%]; P = .15). Predefined subgroup analyses found no interaction with ejection fraction less than 30%, type of surgery, and preoperative use of ÎČ-blockers, intra-aortic balloon pump, or catecholamines. The prevalence of hypotension (57% vs 48%), atrial fibrillation (50% vs 40%), and other adverse events did not significantly differ between levosimendan and placebo.Conclusions and relevance: Among patients with low ejection fraction who were undergoing coronary artery bypass grafting with cardiopulmonary bypass, levosimendan compared with placebo did not result in a significant difference in the composite end point of prolonged catecholamine infusion, use of left ventricular mechanical assist device, or renal replacement therapy. These findings do not support the use of levosimendan for this indication.Trial registration: EudraCT Number: 2012-000232-25; clinicaltrials.gov Identifier: NCT02184819

    In Reply

    No full text
    We appreciate the interest of Lagier et al. in our article.1 The authors highlighted in their letter the work of Montaigne et al.,2 who have recently published on the circadian rhythm in relation to ischemia reperfusion injury in a single-center retrospective propensity-matched cohort study addressing this subject on 596 (matched-pairs) patients undergoing aor-tic valve replacement with or without coronary artery bypass grafting, together with a single-center randomized study in 88 patients undergoing isolated aortic valve replacement, in which the perioperative myocardial injury has been assessed with the geometric mean of perioperative cardiac troponin T release

    Effect of xenon anesthesia compared to sevoflurane and total intravenous anesthesia for coronary artery bypass graft surgery on postoperative cardiac troponin release. an international, multicenter, phase 3, single-blinded, randomized noninferiority trial

    No full text
    Abstract BACKGROUND: Ischemic myocardial damage accompanying coronary artery bypass graft surgery remains a clinical challenge. We investigated whether xenon anesthesia could limit myocardial damage in coronary artery bypass graft surgery patients, as has been reported for animal ischemia models. METHODS: In 17 university hospitals in France, Germany, Italy, and The Netherlands, low-risk elective, on-pump coronary artery bypass graft surgery patients were randomized to receive xenon, sevoflurane, or propofol-based total intravenous anesthesia for anesthesia maintenance. The primary outcome was the cardiac troponin I concentration in the blood 24 h postsurgery. The noninferiority margin for the mean difference in cardiac troponin I release between the xenon and sevoflurane groups was less than 0.15 ng/ml. Secondary outcomes were the safety and feasibility of xenon anesthesia. RESULTS: The first patient included at each center received xenon anesthesia for practical reasons. For all other patients, anesthesia maintenance was randomized (intention-to-treat: n = 492; per-protocol/without major protocol deviation: n = 446). Median 24-h postoperative cardiac troponin I concentrations (ng/ml [interquartile range]) were 1.14 [0.76 to 2.10] with xenon, 1.30 [0.78 to 2.67] with sevoflurane, and 1.48 [0.94 to 2.78] with total intravenous anesthesia [per-protocol]). The mean difference in cardiac troponin I release between xenon and sevoflurane was -0.09 ng/ml (95% CI, -0.30 to 0.11; per-protocol: P = 0.02). Postoperative cardiac troponin I release was significantly less with xenon than with total intravenous anesthesia (intention-to-treat: P = 0.05; per-protocol: P = 0.02). Perioperative variables and postoperative outcomes were comparable across all groups, with no safety concerns. CONCLUSIONS: In postoperative cardiac troponin I release, xenon was noninferior to sevoflurane in low-risk, on-pump coronary artery bypass graft surgery patients. Only with xenon was cardiac troponin I release less than with total intravenous anesthesia. Xenon anesthesia appeared safe and feasible

    Low incidence of SARS-CoV-2, risk factors of mortality and the course of illness in the French national cohort of dialysis patients

    No full text
    International audienceThe aim of this study was to estimate the incidence of COVID-19 disease in the French national population of dialysis patients, their course of illness and to identify the risk factors associated with mortality. Our study included all patients on dialysis recorded in the French REIN Registry in April 2020. Clinical characteristics at last follow-up and the evolution of COVID-19 illness severity over time were recorded for diagnosed cases (either suspicious clinical symptoms, characteristic signs on the chest scan or a positive reverse transcription polymerase chain reaction) for SARS-CoV-2. A total of 1,621 infected patients were reported on the REIN registry from March 16th, 2020 to May 4th, 2020. Of these, 344 died. The prevalence of COVID-19 patients varied from less than 1% to 10% between regions. The probability of being a case was higher in males, patients with diabetes, those in need of assistance for transfer or treated at a self-care unit. Dialysis at home was associated with a lower probability of being infected as was being a smoker, a former smoker, having an active malignancy, or peripheral vascular disease. Mortality in diagnosed cases (21%) was associated with the same causes as in the general population. Higher age, hypoalbuminemia and the presence of an ischemic heart disease were statistically independently associated with a higher risk of death. Being treated at a selfcare unit was associated with a lower risk. Thus, our study showed a relatively low frequency of COVID-19 among dialysis patients contrary to what might have been assumed

    Deep Underground Neutrino Experiment (DUNE) Near Detector Conceptual Design Report

    No full text
    International audienceThe Deep Underground Neutrino Experiment (DUNE) is an international, world-class experiment aimed at exploring fundamental questions about the universe that are at the forefront of astrophysics and particle physics research. DUNE will study questions pertaining to the preponderance of matter over antimatter in the early universe, the dynamics of supernovae, the subtleties of neutrino interaction physics, and a number of beyond the Standard Model topics accessible in a powerful neutrino beam. A critical component of the DUNE physics program involves the study of changes in a powerful beam of neutrinos, i.e., neutrino oscillations, as the neutrinos propagate a long distance. The experiment consists of a near detector, sited close to the source of the beam, and a far detector, sited along the beam at a large distance. This document, the DUNE Near Detector Conceptual Design Report (CDR), describes the design of the DUNE near detector and the science program that drives the design and technology choices. The goals and requirements underlying the design, along with projected performance are given. It serves as a starting point for a more detailed design that will be described in future documents

    Reconstruction of interactions in the ProtoDUNE-SP detector with Pandora

    No full text
    International audienceThe Pandora Software Development Kit and algorithm libraries provide pattern-recognition logic essential to the reconstruction of particle interactions in liquid argon time projection chamber detectors. Pandora is the primary event reconstruction software used at ProtoDUNE-SP, a prototype for the Deep Underground Neutrino Experiment far detector. ProtoDUNE-SP, located at CERN, is exposed to a charged-particle test beam. This paper gives an overview of the Pandora reconstruction algorithms and how they have been tailored for use at ProtoDUNE-SP. In complex events with numerous cosmic-ray and beam background particles, the simulated reconstruction and identification efficiency for triggered test-beam particles is above 80% for the majority of particle type and beam momentum combinations. Specifically, simulated 1 GeV/cc charged pions and protons are correctly reconstructed and identified with efficiencies of 86.1±0.6\pm0.6% and 84.1±0.6\pm0.6%, respectively. The efficiencies measured for test-beam data are shown to be within 5% of those predicted by the simulation

    Reconstruction of interactions in the ProtoDUNE-SP detector with Pandora

    No full text
    International audienceThe Pandora Software Development Kit and algorithm libraries provide pattern-recognition logic essential to the reconstruction of particle interactions in liquid argon time projection chamber detectors. Pandora is the primary event reconstruction software used at ProtoDUNE-SP, a prototype for the Deep Underground Neutrino Experiment far detector. ProtoDUNE-SP, located at CERN, is exposed to a charged-particle test beam. This paper gives an overview of the Pandora reconstruction algorithms and how they have been tailored for use at ProtoDUNE-SP. In complex events with numerous cosmic-ray and beam background particles, the simulated reconstruction and identification efficiency for triggered test-beam particles is above 80% for the majority of particle type and beam momentum combinations. Specifically, simulated 1 GeV/cc charged pions and protons are correctly reconstructed and identified with efficiencies of 86.1±0.6\pm0.6% and 84.1±0.6\pm0.6%, respectively. The efficiencies measured for test-beam data are shown to be within 5% of those predicted by the simulation

    Separation of track- and shower-like energy deposits in ProtoDUNE-SP using a convolutional neural network

    No full text
    International audienceLiquid argon time projection chamber detector technology provides high spatial and calorimetric resolutions on the charged particles traversing liquid argon. As a result, the technology has been used in a number of recent neutrino experiments, and is the technology of choice for the Deep Underground Neutrino Experiment (DUNE). In order to perform high precision measurements of neutrinos in the detector, final state particles need to be effectively identified, and their energy accurately reconstructed. This article proposes an algorithm based on a convolutional neural network to perform the classification of energy deposits and reconstructed particles as track-like or arising from electromagnetic cascades. Results from testing the algorithm on experimental data from ProtoDUNE-SP, a prototype of the DUNE far detector, are presented. The network identifies track- and shower-like particles, as well as Michel electrons, with high efficiency. The performance of the algorithm is consistent between experimental data and simulation

    Reconstruction of interactions in the ProtoDUNE-SP detector with Pandora

    No full text
    International audienceThe Pandora Software Development Kit and algorithm libraries provide pattern-recognition logic essential to the reconstruction of particle interactions in liquid argon time projection chamber detectors. Pandora is the primary event reconstruction software used at ProtoDUNE-SP, a prototype for the Deep Underground Neutrino Experiment far detector. ProtoDUNE-SP, located at CERN, is exposed to a charged-particle test beam. This paper gives an overview of the Pandora reconstruction algorithms and how they have been tailored for use at ProtoDUNE-SP. In complex events with numerous cosmic-ray and beam background particles, the simulated reconstruction and identification efficiency for triggered test-beam particles is above 80% for the majority of particle type and beam momentum combinations. Specifically, simulated 1 GeV/cc charged pions and protons are correctly reconstructed and identified with efficiencies of 86.1±0.6\pm0.6% and 84.1±0.6\pm0.6%, respectively. The efficiencies measured for test-beam data are shown to be within 5% of those predicted by the simulation
    corecore