33 research outputs found

    A new technique to improve RFI suppression in radio interferometers

    Full text link
    Radio interferometric observations are less susceptible to radio frequency interference (RFI) than single dish observations. This is primarily due to : (1)fringe-frequency averaging at the correlator output and (2) bandwidth decorrelation of broadband RFI. Here, we propose a new technique to improve RFI suppression of interferometers by replacing the fringe-frequency averaging process with a different filtering process. In the digital implementation of the correlator, such a filter should have cutoff frequencies <106< 10^{-6} times the frequency at which the baseband signals are sampled. We show that filters with such cutoff frequencies and attenuation >> 40 dB at frequencies above the cutoff frequency can be realized using multirate filtering techniques. Simulation of a two element interferometer system with correlator using multirate filters shows that the RFI suppression at the output of the correlator can be improved by 40 dB or more compared to correlators using a simple averaging process.Comment: 12 pages, 7 figures; Invited talk given at IVS Symposium in Korea -- New Technologies in VLBI, Korea, Nov 2002; to appear in the conference proceedings (Added answers to the questions during the discussion session

    Magnetic Field Strengths in Photodissociation Regions

    Get PDF
    We measure carbon radio recombination line (RRL) emission at 5.3 GHz toward four H ii regions with the Green Bank Telescope to determine the magnetic field strength in the photodissociation region (PDR) that surrounds the ionized gas. Roshi suggests that the non-thermal line widths of carbon RRLs from PDRs are predominantly due to magneto-hydrodynamic waves, thus allowing the magnetic field strength to be derived. We model the PDR with a simple geometry and perform the non-LTE radiative transfer of the carbon RRL emission to solve for the PDR physical properties. Using the PDR mass density from these models and the carbon RRL non-thermal line width we estimate total magnetic field strengths of B ~ 100-300 µG in W3 and NGC 6334A. Our results for W49 and NGC 6334D are less well constrained with total magnetic field strengths between B ~ 200-1000 µG. H i and OH Zeeman measurements of the line of sight magnetic field strength (B_(los)), taken from the literature, are between a factor of ~ 0.5-1 of the lower bound of our carbon RRL magnetic field strength estimates. Since |B_(los)| ⩽ B, our results are consistent with the magnetic origin of the non-thermal component of carbon RRL widths

    Multi-frequency GMRT Observations of the HII regions S 201, S 206, and S 209 : Galactic Temperature Gradient

    Full text link
    We present radio continuum images of three Galactic HII regions, S 201, S 206, and S 209 near 232, 327, and 610 MHz using the Giant Meterwave Radio Telescope (GMRT). The GMRT has a mix of short and long baselines, therefore, even though the data have high spatial resolution, the maps are still sensitive to diffuse extended emission. We find that all three HII regions have bright cores surrounded by diffuse envelopes. We use the high resolution afforded by the data to estimate the electron temperatures and emission measures of the compact cores of these HII regions. Our estimates of electron temperatures are consistent with a linear increase of electron temperature with Galacto-centric distance for distances up to 18 kpc (the distance to the most distant HII region in our sample).Comment: Accepted for publication in Astronomy & Astrophysics, 13 figures, 6 pages, Late

    An 8.5 GHz Arecibo survey of Carbon Recombination Lines toward Ultra-compact \HII regions: Physical properties of dense molecular material

    Full text link
    We report here on a survey of carbon recombination lines (RLs) near 8.5 GHz toward 17 ultra-compact \HII regions (\UCHII s). Carbon RLs are detected in 11 directions, indicating the presence of dense photodissociation regions (PDRs) associated with the \UCHII s. In this paper, we show that the carbon RLs provide important, complementary information on the kinematics and physical properties of the ambient medium near \UCHII s. Non-LTE models for the carbon line forming region are developed, assuming that the PDRs surround the \UCHII s, and we constrained the model parameters by multi-frequency RL data. Modeling shows that carbon RL emission near 8.5 GHz is dominated by stimulated emission and hence we preferentially observe the PDR material that is in front of the \UCHII continuum. We find that the relative motion between ionized gas and the associated PDR is about half that estimated earlier, and has an RMS velocity difference of 3.3 \kms. Our models also give estimates for the PDR density and pressure. We found that the neutral density of PDRs is typically >> 5 ×\times 105^5 \cmthree and \UCHII s can be embedded in regions with high ambient pressure. Our results are consistent with a pressure confined \HII region model where the stars are moving relative to the cloud core. Other models cannot be ruled out, however. Interestingly, in most cases, the PDR pressure is an order of magnitude larger than the pressure of the ionized gas. Further investigation is needed to understand this large pressure difference.Comment: 28 pages, 7 figures, 5 tables (accepted for publication in ApJ

    G359.87+0.18: An FR II Radio Galaxy 15 Arcminutes from Sgr A*. Implications for the Scattering Region in the Galactic Center

    Full text link
    G359.87+0.18 is an enigmatic object located 15' from Sgr A*. It has been variously classified as an extragalactic source, Galactic jet source, and young supernova remnant. We present new observations of G359.87+0.18 between 0.33 and 15 GHz and use these to argue that this source is an Faranoff-Riley II radio galaxy. We are able to place a crude limit on its redshift of z > 0.1. The source has a spectral index \alpha < -1 (S \propto \nu^\alpha), suggestive of a radio galaxy with a redshift z >~ 2. The scattering diameters of Sgr A* and several nearby OH masers (~ 1" at 1 GHz) indicate that a region of enhanced scattering is along the line of sight to the Galactic center. If the region covers the Galactic center uniformly, the implied diameter for a background source is at least 600" at 0.33 GHz, in contrast with the observed 20" diameter of G359.87+0.18. Using the scattering diameter of a nearby OH maser OH 359.762+0.120 and the widths of two, nearby, non-thermal threads, G0.08+0.15 and G359.79+0.17, we show that a uniform scattering region should cover G359.87+0.18. We therefore conclude that the Galactic center scattering region is inhomogeneous on a scale of 5' (~ 10 pc at a distance of 8.5 kpc). This scale is comparable to the size scale of molecular clouds in the Galactic center. The close agreement between these two lengths scales is an indication that the scattering region is linked intimately to the Galactic center molecular clouds.Comment: Accepted for publication in the ApJ, vol. 515, LaTeX2e manuscript using aaspp4 macro, 19 pages, 8 figures in 11 PostScript file

    The Radio Ammonia Mid-plane Survey (RAMPS) Pilot Survey

    Get PDF
    The Radio Ammonia Mid-Plane Survey (RAMPS) is a molecular line survey that aims to map a portion of the Galactic midplane in the first quadrant of the Galaxy (l = 10°–40°, | b| \leqslant 0\buildrel{\circ}\over{.} 4) using the Green Bank Telescope. We present results from the pilot survey, which has mapped approximately 6.5 square degrees in fields centered at l = 10°, 23°, 24°, 28°, 29°, 30°, 31°, 38°, 45°, and 47°. RAMPS observes the NH3 inversion transitions NH3(1,1)–(5,5), the H2O 61,6–52,3 maser line at 22.235 GHz, and several other molecular lines. We present a representative portion of the data from the pilot survey, including NH3(1,1) and NH3(2,2) integrated intensity maps, H2O maser positions, maps of NH3 velocity, NH3 line width, total NH3 column density, and NH3 rotational temperature. These data and the data cubes from which they were produced are publicly available on the RAMPS website (http://sites.bu.edu/ramps/)

    The Murchison Widefield Array: Design Overview

    Get PDF
    The Murchison Widefield Array (MWA) is a dipole-based aperture array synthesis telescope designed to operate in the 80-300 MHz frequency range. It is capable of a wide range of science investigations, but is initially focused on three key science projects. These are detection and characterization of 3-dimensional brightness temperature fluctuations in the 21cm line of neutral hydrogen during the Epoch of Reionization (EoR) at redshifts from 6 to 10, solar imaging and remote sensing of the inner heliosphere via propagation effects on signals from distant background sources,and high-sensitivity exploration of the variable radio sky. The array design features 8192 dual-polarization broad-band active dipoles, arranged into 512 tiles comprising 16 dipoles each. The tiles are quasi-randomly distributed over an aperture 1.5km in diameter, with a small number of outliers extending to 3km. All tile-tile baselines are correlated in custom FPGA-based hardware, yielding a Nyquist-sampled instantaneous monochromatic uv coverage and unprecedented point spread function (PSF) quality. The correlated data are calibrated in real time using novel position-dependent self-calibration algorithms. The array is located in the Murchison region of outback Western Australia. This region is characterized by extremely low population density and a superbly radio-quiet environment,allowing full exploitation of the instrumental capabilities.Comment: 9 pages, 5 figures, 1 table. Accepted for publication in Proceedings of the IEE

    First Spectroscopic Imaging Observations of the Sun at Low Radio Frequencies with the Murchison Widefield Array Prototype

    Get PDF
    We present the first spectroscopic images of solar radio transients from the prototype for the Murchison Widefield Array, observed on 2010 March 27. Our observations span the instantaneous frequency band 170.9–201.6 MHz. Though our observing period is characterized as a period of “low” to “medium” activity, one broadband emission feature and numerous short-lived, narrowband, non-thermal emission features are evident. Our data represent a significant advance in low radio frequency solar imaging, enabling us to follow the spatial, spectral, and temporal evolution of events simultaneously and in unprecedented detail. The rich variety of features seen here reaffirms the coronal diagnostic capability of low radio frequency emission and provides an early glimpse of the nature of radio observations that will become available as the next generation of low-frequency radio interferometers come online over the next few years
    corecore