2,639 research outputs found

    A millimeter wave FEL driven by a photocathode rf linac

    Get PDF
    Abstract We present the design of a millimeter wave FEL based on the UCLA photocathode rf linac. The linac energy can be varied between 5 and 18 MeV. The electron pulse duration is 2 ps FWHM, with a peak current exceeding 150 A. The FEL is designed to operate in the high gain Compton regime, controlling the slippage with the propagating radiation in a waveguide. The design will permit the exploration of the basic FEL physics in this regime, including the exploration of saturation and lethargy in the superradiant and steady state regime

    Predators reduce extinction risk in noisy metapopulations

    Get PDF
    Background Spatial structure across fragmented landscapes can enhance regional population persistence by promoting local “rescue effects.” In small, vulnerable populations, where chance or random events between individuals may have disproportionately large effects on species interactions, such local processes are particularly important. However, existing theory often only describes the dynamics of metapopulations at regional scales, neglecting the role of multispecies population dynamics within habitat patches. Findings By coupling analysis across spatial scales we quantified the interaction between local scale population regulation, regional dispersal and noise processes in the dynamics of experimental host-parasitoid metapopulations. We find that increasing community complexity increases negative correlation between local population dynamics. A potential mechanism underpinning this finding was explored using a simple population dynamic model. Conclusions Our results suggest a paradox: parasitism, whilst clearly damaging to hosts at the individual level, reduces extinction risk at the population level

    A Regional Nuclear Conflict Would Compromise Global Food Security

    Get PDF
    A limited nuclear war between India and Pakistan could ignite fires large enough to emit more than 5 Tg of soot into the stratosphere. Climate model simulations have shown severe resulting climate perturbations with declines in global mean temperature by 1.8 C and precipitation by 8%, for at least 5 y. Here we evaluate impacts for the global food system. Six harmonized state-of-the-art crop models show that global caloric production from maize, wheat, rice, and soybean falls by 13 (1)%, 11 (8)%, 3 (5)%, and 17 (2)% over 5 y. Total single-year losses of 12 (4)% quadruple the largest observed historical anomaly and exceed impacts caused by historic droughts and volcanic eruptions. Colder temperatures drive losses more than changes in precipitation and solar radiation, leading to strongest impacts in temperate regions poleward of 30N, including the United States, Europe, and China for 10 to 15 y. Integrated food trade network analyses show that domestic reserves and global trade can largely buffer the production anomaly in the first year. Persistent multiyear losses, however, would constrain domestic food availability and propagate to the Global South, especially to food-insecure countries. By year 5, maize and wheat availability would decrease by 13% globally and by more than 20% in 71 countries with a cumulative population of 1.3 billion people. In view of increasing instability in South Asia, this study shows that a regional conflict using <1% of the worldwide nuclear arsenal could have adverse consequences for global food security unmatched in modern history

    Electron beam manipulation, injection and acceleration in plasma wakefield accelerators by optically generated plasma density spikes

    Get PDF
    We discuss considerations regarding a novel and robust scheme for optically triggered electron bunch generation in plasma wakefield accelerators [1]. In this technique, a transversely propagating focused laser pulse ignites a quasi-stationary plasma column before the arrival of the plasma wake. This localized plasma density enhancement or optical "plasma torch" distorts the blowout during the arrival of the electron drive bunch and modifies the electron trajectories, resulting in controlled injection. By changing the gas density, and the laser pulse parameters such as beam waist and intensity, and by moving the focal point of the laser pulse, the shape of the plasma torch, and therefore the generated trailing beam, can be tuned easily. The proposed method is much more flexible and faster in generating gas density transitions when compared to hydrodynamics-based methods, and it accommodates experimentalists needs as it is a purely optical process and straightforward to implement

    Plasma-photonic spatiotemporal synchronization of relativistic electron and laser beams

    Get PDF
    Modern particle accelerators and their applications increasingly rely on precisely coordinated interactions of intense charged particle and laser beams. Femtosecond-scale synchronization alongside micrometre-scale spatial precision are essential e.g. for pump-probe experiments, seeding and diagnostics of advanced light sources and for plasma-based accelerators. State-of-the-art temporal or spatial diagnostics typically operate with low-intensity beams to avoid material damage at high intensity. As such, we present a plasma-based approach, which allows measurement of both temporal and spatial overlap of high-intensity beams directly at their interaction point. It exploits amplification of plasma afterglow arising from the passage of an electron beam through a laser-generated plasma filament. The corresponding photon yield carries the spatiotemporal signature of the femtosecond-scale dynamics, yet can be observed as a visible light signal on microsecond-millimetre scales

    Risk factors for death in 632 patients with sickle cell disease in the United States and United Kingdom

    Get PDF
    Background: The role of pulmonary hypertension as a cause of mortality in sickle cell disease (SCD) is controversial. Methods and Results: We evaluated the relationship between an elevated estimated pulmonary artery systolic pressure and mortality in patients with SCD. We followed patients from the walk-PHaSST screening cohort for a median of 29 months. A tricuspid regurgitation velocity (TRV)≥3.0 m/s cuttof, which has a 67-75% positive predictive value for mean pulmonary artery pressure ≥25 mm Hg was used. Among 572 subjects, 11.2% had TRV≥3.0 m/sec. Among 582 with a measured NT-proBNP, 24.1% had values ≥160 pg/mL. Of 22 deaths during follow-up, 50% had a TRV≥3.0 m/sec. At 24 months the cumulative survival was 83% with TRV≥3.0 m/sec and 98% with TRV47 years, male gender, chronic transfusions, WHO class III-IV, increased hemolytic markers, ferritin and creatinine were also associated with increased risk of death. Conclusions: A TRV≥ 3.0 m/sec occurs in approximately 10% of individuals and has the highest risk for death of any measured variable. The study is registered in ClinicalTrials.gov with identifier: NCT00492531
    corecore