8,731 research outputs found
Dryland pasture and crop conditions as seen by HCMM
The author has identified the following significant results. The soil moisture difference between the flight lines was partly due to water-holding capacity differences of the two soil types. Fields along the east flight line were in clay; while along the west flight line, the soil was sandy loam which holds less moisture. Due to differences in the amount of green material, the pastures were wetter than the wheat fields. Most of the pastures average from 40-80% green material, while wheat averages from 90-100% green material. A large amount of green material transpired more water and depleted the soil water content faster than dead vegetation. Visicorder data found temperature differences between the rangeland and winter wheat fields. Pasture had a larger percentage of dead material with different thermal properties than live vegetation, and surface temperature was primarily dependent on insolation. Dead material transpired less, but warms up faster than wheat fields
Dryland pasture and crop conditions as seen by HCMM
There are no author-identified significant results in this report
Microwave remote sensing of soil moisture, volume 1
Multifrequency sensor data from NASA's C-130 aircraft were used to determine which of the all weather microwave sensors demonstrated the highest correlation to surface soil moisture over optimal bare soil conditions, and to develop and test techniques which use visible/infrared sensors to compensate for the vegetation effect in this sensor's response to soil moisture. The L-band passive microwave radiometer was found to be the most suitable single sensor system to estimate soil moisture over bare fields. The perpendicular vegetation index (PVI) as determined from the visible/infrared sensors was useful as a measure of the vegetation effect on the L-band radiometer response to soil moisture. A linear equation was developed to estimate percent field capacity as a function of L-band emissivity and the vegetation index. The prediction algorithm improves the estimation of moisture significantly over predictions from L-band emissivity alone
Multifrequency remote sensing of soil moisture
Multifrequency sensor data collected at Guymon, Oklahoma and Dalhart, Texas using NASA's C-130 aircraft were used to determine which of the all-weather microwave sensors demonstrated the highest correlation to surface soil moisture over optimal bare soil conditions, and to develop and test techniques which use visible/infrared sensors to compensate for the vegetation effect in this sensor's response to soil moisture. The L-band passive microwave radiometer was found to be the most suitable single sensor system to estimate soil moisture over bare fields. In comparison to other active and passive microwave sensors the L-band radiometer (1) was influenced least by ranges in surface roughness; (2) demonstrated the most sensitivity to soil moisture differences in terms of the range of return from the full range of soil moisture; and (3) was less sensitive to errors in measurement in relation to the range of sensor response. L-band emissivity related more strongly to soil moisture when moisture was expressed as percent of field capacity. The perpendicular vegetation index as determined from the visible/infrared sensors was useful as a measure of the vegetation effect on the L-band radiometer response to soil moisture
Development of visible/infrared/microwave agriculture classification and biomass estimation algorithms, volume 2
Agricultural crop classification models using two or more spectral regions (visible through microwave) were developed and tested and biomass was estimated by including microwave with visible and infrared data. The study was conducted at Guymon, Oklahoma and Dalhart, Texas utilizing aircraft multispectral data and ground truth soil moisture and biomass information. Results indicate that inclusion of C, L, and P band active microwave data from look angles greater than 35 deg from nadir with visible and infrared data improved crop discrimination and biomass estimates compared to results using only visible and infrared data. The active microwave frequencies were sensitive to different biomass levels. In addition, two indices, one using only active microwave data and the other using data from the middle and near infrared bands, were well correlated to total biomass
Development of visible/infrared/microwave agriculture classification and biomass estimation algorithms
Agricultural crop classification models using two or more spectral regions (visible through microwave) are considered in an effort to estimate biomass at Guymon, Oklahoma Dalhart, Texas. Both grounds truth and aerial data were used. Results indicate that inclusion of C, L, and P band active microwave data, from look angles greater than 35 deg from nadir, with visible and infrared data improve crop discrimination and biomass estimates compared to results using only visible and infrared data. The microwave frequencies were sensitive to different biomass levels. The K and C band were sensitive to differences at low biomass levels, while P band was sensitive to differences at high biomass levels. Two indices, one using only active microwave data and the other using data from the middle and near infrared bands, were well correlated to total biomass. It is implied that inclusion of active microwave sensors with visible and infrared sensors on future satellites could aid in crop discrimination and biomass estimation
Regularization of the second-order gravitational perturbations produced by a compact object
The equations for the second-order gravitational perturbations produced by a
compact-object have highly singular source terms at the point particle limit.
At this limit the standard retarded solutions to these equations are
ill-defined. Here we construct well-defined and physically meaningful solutions
to these equations. These solutions are important for practical calculations:
the planned gravitational-wave detector LISA requires preparation of waveform
templates for the potential gravitational-waves. Construction of templates with
desired accuracy for extreme mass ratio binaries, in which a compact-object
inspirals towards a supermassive black-hole, requires calculation of the
second-order gravitational perturbations produced by the compact-object.Comment: 12 pages, discussion expanded, to be published in Phys. Rev. D Rapid
Communicatio
Construction of the second-order gravitational perturbations produced by a compact object
Accurate calculation of the gradual inspiral motion in an extreme mass-ratio
binary system, in which a compact-object inspirals towards a supermassive
black-hole requires calculation of the interaction between the compact-object
and the gravitational perturbations that it induces. These metric perturbations
satisfy linear partial differential equations on a curved background spacetime
induced by the supermassive black-hole. At the point particle limit the
second-order perturbations equations have source terms that diverge as
, where is the distance from the particle. This singular behavior
renders the standard retarded solutions of these equations ill-defined. Here we
resolve this problem and construct well-defined and physically meaningful
solutions to these equations. We recently presented an outline of this
resolution [E. Rosenthal, Phys. Rev. D 72, 121503 (2005)]. Here we provide the
full details of this analysis. These second-order solutions are important for
practical calculations: the planned gravitational-wave detector LISA requires
preparation of waveform templates for the expected gravitational-waves.
Construction of templates with desired accuracy for extreme mass-ratio binaries
requires accurate calculation of the inspiral motion including the interaction
with the second-order gravitational perturbations.Comment: 30 page
16 x 25 Ge:Ga Detector Arrays for FIFI LS
We are developing two-dimensional 16 x 25 pixel detector arrays of both
unstressed and stressed Ge:Ga photoconductive detectors for far-infrared
astronomy from SOFIA. The arrays, based on earlier 5 x 5 detector arrays used
on the KAO, will be for our new instrument, the Far Infrared Field Imaging Line
Spectrometer (FIFI LS). The unstressed Ge:Ga detector array will cover the
wavelength range from 40 to 120 microns, and the stressed Ge:Ga detector array
from 120 to 210 microns. The detector arrays will be operated with multiplexed
integrating amplifiers with cryogenic readout electronics located close to the
detector arrays. The design of the stressed detector array and results of
current measurements on several prototype 16 pixel linear arrays are reported.
They demonstrate the feasibility of the current concept. ***This paper does not
include Figures due to astro-ph size limitations. Please download entire file
at http://fifi-ls.mpe-garching.mpg.de/spie.det.ps.gz ***Comment: 8 pages, SPIE Proceedings, Astronomical Telescopes and
Instrumentation 200
Can skills assessment on a virtual reality trainer predict a surgical trainee's talent in laparoscopic surgery?
Background: A number of studies have investigated several aspects of feasibility and validity of performance assessments with virtual reality surgical simulators. However, the validity of performance assessments is limited by the reliability of such measurements, and some issues of reliability still need to be addressed. This study aimed to evaluate the hypothesis that test subjects show logarithmic performance curves on repetitive trials for a component task of laparoscopic cholecystectomy on a virtual reality simulator, and that interindividual differences in performance after considerable training are significant. According to kinesiologic theory, logarithmic performance curves are expected and an individual's learning capacity for a specific task can be extrapolated, allowing quantification of a person's innate ability to develop task-specific skills. Methods: In this study, 20 medical students at the University of Basel Medical School performed five trials of a standardized task on the LS 500 virtual reality simulator for laparoscopic surgery. Task completion time, number of errors, economy of instrument movements, and maximum speed of instrument movements were measured. Results: The hypothesis was confirmed by the fact that the performance curves for some of the simulator measurements were very close to logarithmic curves, and there were significant interindividual differences in performance at the end of the repetitive trials. Conclusions: Assessment of perceptual motor skills and the innate ability of an individual with no prior experience in laparoscopic surgery to develop such skills using the LS 500 VR surgical simulator is feasible and reliabl
- …