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PREFACE

The final report of Project RSC-3458, "Measurement of Soil Mois-
ture Trends with Airborne Scatterometers" is divided into three vol-
unes. The first volume deals primarily with the work completed by
Dr. Sidrey Theis relating multispectral (visible through microwave)
information to soil moisture trends in bare and vegetated fields.
The second volume deals primarily with the work of Dr. Wesley
Rosenthal in relating the same multispectral data sets to agricultural
crop classification and biomass estimation. The third volume by Ms.
Cheryi Jones, details field work, aircraft schedules, data processing

and calibrations, and the final data sets.
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ABSTRACT

Due to inadequate crop acreage and biomass estimates using satel-
lite and aircraft visible and infrared data, a study was conducted to
(1) develop and test agricultural crop classification models using two
or more spectral regions (visible through microwave), and (2) estimate
biomass by including microwave with visible and infrared data. The
study was conducted at two locations; Guymon, Oklahoma in 1978, and
Dalhart, Texas in 1980. Aircraft multispectral data collected during
the study included visible and infrared data (myltiband data from 0.5
wn - 12 un), passive microwave data [C band (6 cm) vertical and hori-
zontal polarizations, and L band (20 cm) horizontal polarization ] and
active microwave data [K band (2 cm), C band (6 cm). L band (20 cm),
and P band (75 cm) like and cross polarizations]. Ground truth data
from each field consisted of soil moisture at both sites and biomass
at Dalhart. The study was divided into four problems: (1) are differ-
ences in individual band responses related to crop type differences?
(2) what is the most accurate multifrequency crop classifying dendro-
gram (tree classifier) at both locations? (3) what is the utility of
microwave data alone or in combination with other spectral bands for
classifying crops and estimating total biomass? and (4) *s the
multifrequency tree-classification model variability dependent on
phenological or biomass differences? Results indicated that inclusion
of C, L, and P band active microwave data from look anglas greater
than 35 from nadir with visible and infrared data improved crop
discrimination and biomass estimates compared to results using only

visible and infrared data. The active microwave frequencies were
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sensitive to different biomass levels. K and C band were sensitive to
differences at low biomass levels, while P band was sensitive to
differences &t high biomass levels, In addition, two indices, one
using only active microwave data and the other using data from the
middle and near ‘infrared bands, were well correlated to total
biomass. Results from the study implied that inclusion of active
microwave sensors with visible and infrared sensors on future

satellites could aid in crop discrimination and biomass estimation.
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INTRODUCTION

With world population increasing to a point where food supplies
will becnme scarce, the need to improve global agricultural informa-
tion systems becomes critically important. Such emphasis is needed to
avert potential world disasters of starvation and malnutrition due to
inadequate food supplies. The delicate imbalance is demonstrated by
the fact that since 1948 the amount of exported grain from developed
countries to developing countries has risen dramatically. As a
result, the less developed countries are more dependent on surplus
production in a few developed countries (Wortman, 1976). A recent
World Food and Nutrition Study (National Academy of Sciences, 1977)
emphasized the rced for improved systems by recommending high priority
research on

1. information needs of producers,

2. crop monitoring systems,

3. international data bases for land and nutrition, and

4, a total information system,

Perhaps the major priority is developing crop monitoring sys-
tems. This world-wide need was emphasized when the United States lost
millions of diliars by selling wheat to the Soviet Union, who later
sold the wheat at much higher prices. An adequate crop monitoring
system would possibly’have averted the deal.' The benefits of improved
agricultural monitoring systems used for predicting food productfon
would include | |

1. commodity prices would be more stable,

2. governments will be able to plan foreign policy, and



3. storage, transportation and processing facilities will be
more efficiently used.

The first benefit would prevent rapid and drastic seasonal commodity
price fluctuations due to large and small supplies. Second, the
United States government, with an estimate of foreign production,
would be able to deal according to the foreign government's true
needs. This would prevent events such as the U. S./Soviet Union wheat
deal of 1974, Third, more efficient use of transport and storage
facilities would help achieve the first two benefits.

The major problem of monitoring production systems within foreign
countries is the inadequate source of data on acreages and climate
variables. Several countries do not presently have any means for
estimating acreage or production within the country. Other countries
have production monitoring systems which are highly inaccurate. Acre-
age and yield estimates by the government are often inaccurate. In
addition, several countries do not permit other countries to use the
production information. Consequently, & universal vechnique is needed
soon.

One technique developed within the past twenty years uses remote-
ly sensed data--sensors aboard satellites or aircraft--to estimate
production. From remotely-sensed data much information can be ob-
tained with a minimum of ground sampling (Bauer, 1975). Such infor-
mation would drastically reduce the cost of monitoring agricultural
systems. The technique 1is based primarily on the relationship of
reflectance in the visible and infrared region of the alectromagnetic
spectrum to vegetation type, cover, and crop condition. Idealistical-

ly, each healthy species has a characteristic electromagnetic signa-
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ture at a given growth stage. Any departure from the signature indi-
cates physiological stress which could impact crop yield. However,
the actual spectrum varies to an extent that crop and stress
identification is impossible using available data. The variability of
a crop spectrur, due to stress is much larger than variahility due to
differences between crops. The vegetation spectrum also differs
significantly from the non-vegetated spectrum. Consequently, based
upon the difference within the spectrum, crop types have been
discriminated to a good degree of accuracy. Also, based on the
spectra, models have been developed which estimate biomass, leaf area
index, or percent cover (Richardson and Wiegand, 1977; Rouse et al.,
1973). Biomass estimates can then be correlated to final economic
yield (Holliday, 1960a, b; Donald, 1963). As a result, visible/
infrared satellite and aircraft data have been used in (1) estimating
the percentage of area planted in a given crop, and (2) evaluating
crop condition and biomass. The combination of the two gives a pro-
duction estimate for the area (MacDonald, 1979), Consequently,
through the use of satellite and aircraft data, agricultural classifi-
cation and biomass estimation became important as a means of obtaining
reasonable estimates of planted acreage and ultimately, yield. In
addition, agricultural data can be collected by satellites and air-
craft from isolated areas of the world where agricultural information
had been difficult to obtain.

The major experiment during the 1970s which classified wheat and
estimated wheat acreage using only visible and near infrared data from
Landsat was the Large Area Crop Inventory Experiment (LACIE) (Mac-

Donald, 1979). LACIE was developed primarily at the request of the



U. S. government to help monitor foreiyn production. The objective
was to estimate foreign wheat production in several key countries,
such as the Soviet Union and Argentina. Success of the program would
prevent another i, S./Soviet Union grain trade incident. Results were
well documented and the experiment was successful in some geographical
areas (Heydorn et al., 1979a; Potter et al., 1979). From that experi-
ment and other studies, many crops were discriminated from bare soil
and water, but acreage estimates were still inaccurate as a result of
similar spectral responses from other crops grown during the same time
of year (Heydorn et al., 1979a). To improve estimates, ground ancil-
lary data, such as crop growth stage or spectral data from different
wavelength regions, are needed. With the proposed launch of the
Thematic Mapper, with finer spatial resolution and different spectral
bands than Landsat, land-use and vegetation classification will again
be the primary objective of further research (National Research Coun-
¢il, 1976). The Thematic Mapper will have spatial resolution of 30 m
x 30 m while Landsat has a resolution of 80 m x 80 m. The Thematic
mapper will have spectral bands of (1) 0.45 to 0.52 um, (2) 0.52 to
0.60 wm, (3) 0.63 to 0.69 um, (4) 0.76 to 0.90 um, (5) 1.00 to 1.30
pny (5) 1.55 to 1.75 ym and (7) 2.08 to 2.35 um. Landsat has spectral
bands of (1) 0.50 to 0.60 um (2) 0.60 to 0.70 wn (3) 0.70 to 0.80 and
(4) 0.80 to 1.1 ym.

Different supervised and unsupervised classification techniques
emerged from LACIE. In the first method, "samples" of spectral data
were compared to a "training" sample of known land use. If the two
samples were similar, the sample was classified as the same land use
or vegetation cover that was present in the training area. In this

4



technique, the analyst input the training information in a classifier
algorithm (Bauer et al., 1977). In the unsupervised method, similar
responses are grouped together into clusters and these clusters are
then compared to actual species clusters (Cooley and Lohnes, 1971).
From this technique a tree-classification diagram can be developed
based on spectral differences between the clusters. Both techniques
are widely used in analyzing visible/near infrared spectral data with
supervised techniques being more widely used with satellite data.

The major problems in classifying agricultural crops with
visible/infrared data have been the dependence for reliable data on
clear weather and the variability of the classification estimate due
to phenological or biomass differences. Billingsley et al. (1976)
proposed to eliminate these problems by including data from additicnal
bands, such as microwave data, which are independent of cloud cover.
Spectral data from many countries are predominantly influenced by
excessive cloud cover. In many countries, agricultural Landsat data
were obtained only once during the growing season. Consequently, more
frequent passes or additional bands were needed to improve satellite
coverage. Also, with additional bands more accurate biomass estimates
may be possible. During the LACIE experiment it was also found that
climate data, primarily precipitation, was necessary before good esti-
mates of yield could be obtained. In the LACIE study, precipitation
was used to estimate the soil moisture available to the crop. The
microwave sensors have been recognized as a possible source of mois-
ture estimates. In addition to this purpose they could also be used

to aid in discriminating crops.



Sensors can detect from two modes of radiation--active and pas-
sive, Active sensors refer to sensing reflected surface radiation
which originated from a known man-made energy source., Passive sensors
refer to detection of natural surface emitted and reflected radia-
tion. In this case, the surface is the source of radiation. Con-
siderable effort has been made to take advantage of polarization
effects in active sensors while little has been done in polarization
effects in passive systems, Both have significant polarization
differences; however, passive microwave systems have too coarse
spatial resolution to be used effectively in crop discrimination.
Microwave data can be either active or passive. Active microwave res-
ponses are expressed as ¢°, the scattering coefficient, while passive
microwave responses are expressed as brightness temperature. In con-
trast to the microwave data, visible studies are primarily passive
systems. Active visible/infrared data have been analyzed, but are too
complicated to be widely used.

Active microwave responses are primarily dependent on two surface
characteristics--surface roughness and soil moisture. Consequently,
crops having different roughnesses or morphologies would respond dif-
ferently in different radar bands (Simonett et al., 1967). Higher
frequencies and the consequent shorter wavelength should be more sen-
sitive than lower frequencies to the roughness characteristics of
vegetation. Different microwave frequencies should also have differ-
ent capabilities of penetrating crop canopies and different sensitiv-
ity to soil moisture. Active microwave responses in the 8-18 GHz
range at high incidence angles of HH (horizontally polarized transmit

and received) and VV (vertically polarized transmit and received) have



been related to vegetative characteristics (Ulaby et al., 1975). High
enissivity in the passive microwave have also been related to vegeta-
tive biomass (Sibley, 1973; Peake et al., 1966; Newton, 1977).

In spite of the extensive research in the active microwave
region, few studies have related combinations of visible, infrared,
and microwave data to vegetation characteristics (Brakke et al., 1981;
Ulaby et al., 1981). Consequently, it is felt that a classification
and biomass estimation study using visible, near infrared, far or
thermal infrared, and microwave data collected over an agricultural
area may produce a multifrequency system that will provide improved

estimates of crop acreage and crop conditions,
Objectives and Research

The purpose of this study was to (1) develop and test an agricul-
tural classification model using two or more spectral regions (visible
through microwave), and (2) estimate biomass by including microwave
with visible 2nd infrared data. The hypothesis was that microwave
data can improve classification and biomass estimation accuracy over
present classification and estimation techniques that use visible and
infrared data.

The study was divided into four problems which were intended to
answer the previously mentioned goals. The first two deal primarily
with crop classification and the last two with biomass and crop clas-
sification:

1. Are differences in individual spectr2! band responses related to
crop type differences and what is the relationship of each indivi-

dual multispectral band response to crop type?
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2. What is the most accurate multifrequency dendrogram (tree-classi-
fication diagram) of agricultural crops in the Dalhart, Texas and
Guymon, Oklahoma areas?

3. What is the utility of microwave data alone or in combination with
other spectral bands for classifying agricultural crops and esti-
mating biomass?

4. Is the multifrequency crop tree-classification model influenced by
phenological or biomass differences and can the model be adjusted
to apply for all biophases?

Data used in this study were collected from the Guymon, Oklahoma
area in 1978 and the Dalhart, Texas area in 1980. Aircraft data were
collected using the NASA C-130 aircraft with its full complement of
sensors and crew from the Johnson Space Center in Houston, Texas.
Ground measurements were collected and processed with extensive sup-
port from graduate students and technical personnel from both Texas
A& University and the University of California at Santa Barbara.
Further discussion of the collection and processing of these data will
be found in a following section.

A valid hypothesis implies that more accurate production esti-
mates are possible by including microwave with visible and infrared
data. Microwave data could add another dimension--vegetative
roughness-~-to the analysis of visible and infrared data which are
highly chrrelated to the amount of biomass. In addition, the inde-
pendence of microwave data to weather conditions allows analysis of

many other areas of the world which were difficult to monitor using

yisible and infrared data.



REVIEW OF LITERATURE

Classification and biomass models are based on spectial response
differences between and within crop types in given wavelength
regions. Consequently, to better understand classification models, an

understanding of the spectral response at all wavelengths is required.
Spectral Theory

The reflection of elestromagnetic radiation from a given surface

as given by equations 1 and 2 is described by Janza (1975):

-(€9c080,) + / €, - 5120
O i

(e2050;) + v ep- sin2e ’

and

(cosgy) - v ep- sin%g

Rp = (2)
h (cose;) + ¢ ep- sino

where Ry and -Rp are the reflection coefficients for vertical and
horizontal polarizations, respectively; e, is the dielectric constant
of the reflecting medium, and e; is the incidence angle of the plane
wave source. Consequently, the dielectric constant plays an important
role in Jdetermining reflectance at all wavelengths. The dielectric
constant varies with wavelength, moisture content, and temperature.
For example, variations of the dielectric with wavelength are demon-

strated by water--the dielectric at high microwave frequencies is 81,



and in the visible, 1.77 (Janza, 1975). Also, the relationship
between wavelength and roughness affects reflectance. If surface
roughness 1is greater than one-eighth of the wavelength, the reflect-
ance is diffuse; otherwise, reflectance is primarily specular, This
explains why some surfaces look rough at one frequency and smooth in
another. Equations 1 and 2 apply for conditions involving an external
source,

In the visible and near-infrared spectral regions, solar radia-
tion is the primary source for reflected radiation at the earth sur-
face., In this spectral region, different materials possess different
reflective properties. These spectral differences can be analyzed and
used in discriminating many materials on earth. Given that solar
radiation 1s relatively constant at a given zenith angle--assuming
constant atmospheric absorption and transmission--reflectance is ana-
lyzed through radiance. Radiance (L) can be defined as radiant flux
per unit of projected source area in a specified direction (Janza,
1975). Radiance is calculated for a wavelength channel, Ap-A;, by

L = -% [Aa [%(A)R(x)(Tﬂ(A)TZ(A)p(T)sin B+ pg (A{] da (3)
A\ '
where E(A) is the specular solar irradiance at the top of the atmos-
phere at normal incidence, R(A) the spectral response function of the
wavelength channel, Tg(A) the monochromatic one-way tranmissivity of
the atmosphere at elevation angle B, Ty(A) the monochromatic trans-

missivity of the atmosphere in the zenith direction for solar radia-
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tion reflected by the surface to the nadir-viewing sensor, p(A) the
reflectance of the surface, and p'g()) the atmospheric reflectances
as dependent on solar elevation, B.

Microwave emissions can be measured in two modes--active (sur-
face reflection of energy from a source) or passive (emitted from the
surface), This 1s in contrast with visible and infrared data which is
generally sensed in a passive mode. Active visible research has been
conducted using lidar, but measurements are quite complicated. The
active microwave (radar) responses from many surfaces have been exten-
sively analyzed primarily due to the application of active systems by
the military; however, passive microwave research has been less devel-
oped due to limitations in spectral resolution or antenna size. Since
active and passive microwave data are two different sensing modes, the
responses are expressed differently--radar returns are expressed in o°
and passive microwave returns are expressed as brightness temperature.

The microwave region has more complex relationships which define
reflected radiation. With active microwave systems, surface charac-
teristics have been analyzed by comparing the power returned to a
radar receiver with the transmitted power as calculated from the radar

equation

= G 1, (4)

g
r 4R 2 4qR 2 r

where Wp 1is the received power, Wy the transmitted power, Gt the
gain of the transmitting antenna in the direction of the target, R the

distance between the antenna and target, o the radar cross section,

n



and Ap the effective area of the receiving antenna aperture (Janza,
1975). Most applications involve targets which are larger than a re-
solution cell of radar. Consequently, it is more convenient to consi-
der the average return power over an irradiated area. The average
differential cross-section is known as the scattering coefficient,
0% The above equation implies that radar returns ¥rom a target
depend upon the strength of the transmitted energy and the reflecting
capability of the target. The target roughness and dielectric charac-
teristics produce varying proportions of the return described by the
backscatter. In addition to determining the return power, scattering
properties of targets can also depolarize the return causing cross-
polarized (HV or VH) radar data to be useful in geological and agri-
cultural applications. Such depolarization leaves the cross-polarized
data sensitive to dielectric properties.

The effect of roughness and the dielectrjc constant on active
and passive microwave returns'differ. The roughness effect dominates
the active microwave returns, while the dieleciric influence dominates
the passive microwave return. The effects also depend on look angle.
At high look angles, roughness becomes even more predominant.

According to Planck's equation, emitted radiation from the earth
surface peaks in the thermal infrared region. Total emitted surface
radiation is described by the Stephan-Boltzmann Law (Planck's Equation
applied over all wavelengths):

R = eg ol (5)
where R is emitted radiation, eg is the emissivity of the surface, o

is the  Stephan-Boltzmann  constant  (5.7x1078Wm~2°k™%),  and
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T is the absolute temperature. Most natural objects have emissivities
between 0.8 and 1.0 in the thermal region. This will be different in
the microwave region. Several factors, such as topography and
weather, have made it difficult te classify crops using thermal infra-
red data. Thermal data, however, héve often bheen used to evaluate
soil moisture conditions.

Emissions in the passive microwave region are much smaller than
thermal infrared emission. Emitted responses are based upon
Rayleigh-Jean's approximation to Plank's equation (Wolfe and Zissis,
1978)

Rb = -?.B.L.w- (6)

A2

where R is radiation (brightness) from a blackbody, T the absolute
temperature, k Plank's constant and A the wavelength. The emitted
radiation in the microwave region is often expressed as brightness
temperature., It can be expressed as a function of ground and atmos-
pheric emissivity (eg and ea), ground reflectance (pg), and sky,
ground, and atmospheric (clouds, water vapor, particulates) tempera-
tures (Ts,Tg,Ta):

Tb &= pgTs + eng + eaT& + pgTa (7)

Effects of the atmosphere are often negligible, especially with cloud-

less sky. Consequently, Ty i1s often neglected giving

Ty = egTq * (1 = )T, (8)
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Since Tg and (1 - ) are both small, the reflection term, (1 -
eg) Ts,» is often omitted leaving only

The variation in ground emissivity, eg provides much infarmation on
dielectric constant and roughness. Since healthy crops contain over
50% water and appear rough in certain microwave wavelengths, ground
emissivity will vary under different vegetation conditions (Peake,
1966; Sibley, 1973).

Given the spectral theocry, which is applicable at all wave-
lengths, one must turn to the factors which primarily influence spec-
tral responses of agricultural crops. To simplify the description,
the electromagnetic spectrum will he divided into the visible/infrared

and the microwave regions,

Visible/Infrared Responses

Water and chlorophyll are the most important substances which
influence vegetation and soil reflectance in the visible/infrared.
At high solar elevation angles, water strongly absorbs solar radiation
in both the visible and infrared. Consequently, visible and infrared
reflectance from a soil would often decrease under high moisture con-
ditions. The moisture effect is highly dependent on conditions within
the top thin layer of the surface being observed. No subsurface mois-
ture can be directly determined using wavelengths shorter than one
centimeter (Davis et al., 1965).

Leaves, however, have a completely different spectrum. Due to

Fresnel reflectance at air/water interfaces within the leaves, near

14



WEAT R

ST

and middle infrared radiation is strongly reflected (Figure 1) (Gates,
1980). Figures 2 demonstrates that the relationship between biomass
and reflectance is dependent upon crop type and maturity (Tucker et
al., 1979, Park and Deering, 1981). ; Reflectance increases rapidly
with tctal biomass in the near- and middle-infrared region until a
saturated reflectance is reached. At that point revVlectance becomes
insensitive to increases in biomass., Then at a point near maturity,
the reflectance in this region begins to decrease with biomass.
Consequently for corn and soybeans, crops with a near-complete canopy
cover, reflectance is insensitive to total biomass increases for a
given period of time. Other techniques are needed to quantify biomass
estimates in this region. Reflectance is also a function of the
chlorophyll content. Chlorophyli absorbs radiation in the red and
blue regions, and has a slight reflectance in the green and high
reflectance in the near infrared. Studies by Hoffer and Johannsen
(1969) indicated changes in chlorophyll content allowed other caro-
tenes and xanthophylls to become evident, thus affecting primarily the
visible/infrared reflectance. Since infrared reflectance is strongly
dependent on the air/water interface and chlorophyll content, any
environmental effect which changes the area of air/water interface or
the number of Tleaves will influence the reflectance. Consequently,
disease and stress (moisture, nutrient, etc.) drastically decrease
infrared reflectance. In spite of these effects, differences between
the visible and near infrared data have been the basis for classifying
vegetation and estimating biomass. The main premise is that at a

given phenological period for a crop, spectral characteristics in the
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crop allow for crop discrimination--assuming that spectral differences
within the crop attributed to stress or disease are less than the dif-
ferences between crops. Also, if two crops have the same phenology
and spectral characteristics, they will not be spectrally separable.
Given difference in chlarophyll content and leaf succulence hetween
plant species, classification and biomass estimation models have been
developed. The detection is consequently based on visible/infrared
differences between crop typzs. Different biomass models will be dis-
cussed later.

Integrating the soil and vegetation reflectance has been a prob-
Tem, Many have tried to model canopy (integrated) reflectance
(Kubelka and Munk, 1931; Chance and LeMaster, 1977; Richardson et al.,
1975). Chance and LeMaster (1977) used the Suits model to estimate
reflected and non-reflected radiation from a boundary layer. However,
the model showed little agreement with wheat reflectance data as a
function of solar angle. Richardson et al. (1975) used the
Kubelka-Munk and a regression model, using biophysical parameters for
extracting plant, soil, and shadow reflectance compone .s of cropped

fields. The model did correlate well to actual scene reflectance.

Microwave Responses

Three factors primarily affect reflectance and emission from
agricultural surfaces in the microwave region--surface roughness, soil
moisture, and vegetation. To fully understand the return from an
agricultural scene, one must account for each factor. Each factor

will be discussed in greater detail.
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Roughness - As mentioned before, for active microwave systems of
is governed by the geometric properties of the surface.  Beckman
(1966) found the backscatter to be related to the variance and mean
slope of the surface, Ulaby et al. (1978) found o variations attrib-
utable to soil roughness decrease with look angle out to 10° from
nadir, which is the least sensitive to roughness. Fenner et al.
(1981) and Ulaby and Bare (1979) found row direction was very impor-
tant in the radar return. Rows perpendicular to the emitted beam have
much higher returns compared to rows parallel to the emitted beam. At
certain look angles and frequencies the surface roughness effect may
dominate the terms that are due to changes in the dielectric constant
brought about by changes in soil moisture,

Wang et al. (1980) noted that tilled row direction is also a
major factor 1in passive microwave emission, especially when the
antenna is directed off nadir to the ground. The difference between
vertical and horizontal polarized returns in passive microwave returns
can be related to the soil surface roughness (Newton 1977, Choudhury
et al., 1979). The effect appears to decrease at look angles larger
than 35 degrees off nadir. The roughness effect is also dependent on
the relative height of the roughness in relation to the wavelength of
the sensor.

Soil moisture - The effect of the dielectric constant on the

active microwave response is demonstrated by changes in soil mois-
ture. In the high frequency microwave regions, soil has a dielectric
constant of 3, and water, 81. Consequently, any significant change in

soil moisture should be detectable, The relationship has been studied
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in great detail using active systems, Laboratory experiments by
Lundien {1971) showed L band (21 cm wavelength) data should be more
sensitive to soil moisture differences thari K band (1.55 cm wave-
length) due to differences in the dielectric constant of water at the
two frequencies. However, llaby et al. (1978) found C band active
microwave data to be most sensitive to soil moisture differences in
the surface two centimeters. The severe effect of roughness that is
inherent in active microwave returns was minimum in Ulaby's experiment
which was carried out over tillage common to Kansas using C band at
10° off nadir.

Field experiments by Newton (1977) and analysis of satellite data
by McFarland (1976) had shown L band passive microwave data was sensi-
tive te soil moisture changes within approximately the surface & cm
layer. Other similar work had been done in using active and passive
microwave data. An excellent review of studies concerning soil mois-
ture estimates using microwave systems was given by Schmugge (1978).

Vegetation - The effect of vegetation on the active microwave
return has been studied since the mid-1960s. Early work concentrated
on analyzing effects in the K band (1-2 cm) region (Simonett et al.,
1967, Ellermeier et al., 1969). The studies indicated radar was a
potential tool for discriminating crops. The response is based on
both moisture and roughness. As a crop matures, the crop moisture
increases to the time that the crop begins to senesce and then
decreases. At look angles of greater than 40° from nadir, o° is
strongly correlated to plant water content in corn and wheat (Ulaby

and Bush, 1976a and 1976b). Consequently, biomass could be estimated
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for the growing period. Also, crops have different morphologies which
can be applied to crop discrimination. However, other factors may
influence the scatterometer return. De Loor et al. (1974) found o° to
vary as much as 4 to & db under different wind speeds. Brakke et al.

0 over wheat and

(1981), however, found no influence of wind speed on o
sorghum in the K band region. Ulaby et al. (1975) found that crops
can be discriminated with multifrequercy vertically polarized data
(between 8 to 18 GHz (2.5-3.5 cm)). Look angles at 30° to 65° from
nadir removed the soil moisture effects leaving only the vegetative
effects. Comparisons between 1ike- and cross-polarized active
microwave data (1.25 GHz--25 cm) also provided valuahle information on
vegetation. Classification accuracies improved from 65% to 71% by
including cross with like-polarized data (Ulaby et al., 1980).

Comparisons cof different polarizations of passive microwave data
also indicated crop morphological differences (Kirdyashev et al.,
1979). Relationships between biomass, height, plant nioisture content
and brightness temperature at multiple frequencies were found. Such
parameters can be related to crop type differences. The passive
microwave data, however, are less practical for crop discrimination
due to the poor resolution associated with aircraft and spacecraft
passive systems,

To summarize, active microwave data at look angles greater than
30° from nadir appear to be related to vegetative characteristics
which can imply crop type differences. Active microwave systems are
more sensitive to roughness, while passive systems are more sensitive
to soil moisture. Multifrequency passive microwave data also have

been related to similar vegetative characteristics but are less
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sensitive to roughness and vegetation, and have less acceptable
resolution capabilities than the active systems. The sensitivity to
all three factors is dependent on wavelength (frequency) as well as

polarization and look angle for both active and passive systems.
Classification Models

Supervised Models

From the previously mentioned visible and near-infrared relation-
ships of vegetation, several classification models have been devel-
oped. Heydorn et al. (1979b) gave a general description of several
supervised and unsupervised techniques which emerged from studies with
LACIE.

Supervised classification techniques became one of the key clas-
sification techniques., Tne methods required information on the
classes--means, standard deviations, or vectors of data. This infor-
mation was termed the training classifier. Using various comparison
techniqués, sampled data were compared to the training classifier and
placed into the proper class. To separate classes, discriminant func-
tions as determined from class statistics were calculated, Any sample
which fell on either side of the function was placed into one of the
classes (Swain and Davis, 1979). Several of the widely used super-
vised techniques were maximum likelihood per point, maximum likelihood
per homogeneous group, ECHO--Extraction and Classification of Homogen-
eous Objects--minimum distance to the class means, and standard devia-
tions to calculate the probability of including the sample in a given

class. The only difference between the ECHO classifier and the maxi-
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mim Jikelihood classifier was the sample; ECHO uses a homogeneous
group of sample points, while the maximum 1ikelihood per point method
analyzes only one sample point at a time, In the minimum distance
classifier, a Euclidean distance was caiculated between the data vec-
tor at one point and the mean vector. If the distance was less than a
given threshold, the point was placed into the given class. The
layered classifier differed from the maximum 1ikelihood per point
classifier in that multiple decisions, rather than one decision were
made at each point. This allowed for different subsets of channels to
be used. Bauer et al. (1977) found no significant difference in
accuracy using each of these techniques. However, the minimum dis-

tance classifier had the lowest computer cost.

Unsupervised Models

Unsupervised classification, or clustering, models require no
information on classes. The techniques grouped similar spectral aver-
zges, The most widely used technique involved the minimum distance
between observations (Johnson, 1967). Another similarity criterion
technique involved minimizing variance or the sum of squares. Other
techniques were described by Orloci (1978) and Hartigan (1974). Such
techniques had been used in combination with other supervised tech-
niques to classify agricultural scenes and estimate areal coverage
from Landsat data (Heydorn et al., 1979a). A major part of the clas-
sifier was the "tree structure" which defined decision points as
determined by variable differences between spectral classes involved.

Classification accuracies using these techniques had varied from

one location to another. The areas having the lowest accuracy had
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"confusion" crops growing in the same area--crops which have the same
spectra at a given period. Accuracies ranged from 60% to over 90% in
some areas,

In the microwave region, success in classifying vegetation has
been equally as accurate. Simonett et al. (1967) was one of the first
to classify an agricultural scene using like- and cross-polarized
data, Ulab, et al. (1980) also classified correctly 71% of an area
using like- and cross-polarized microwave data. Other work was done
by Morain and Simonett (1967), Schwarz and Caspell (1968), Waite and
MacDonald (1971}, and Ulaby et al. (1975). Blanchard et al. (1979)
classified pasture, timber and bare soil with reasonable accuracy
using airborne scatterometer data. Land use was correctly determined
in greater than B0% of the cases by analyzing the differences in the
10° and 35° look angle o° values for like-polarized data, differences
in the like~- and cross-polarized data at 10° Jook angle, and the
cross polarized data at 10° look angle. Few studies, however, have
combined active and passive microwave data with visible and
near-infrared data. Ulaby et al. (1981) analyzed scatterometer and
Landsat data collected over an agricultural area 1in 1978,
Classification accuracy increased 10% by including scatterometer data
with Landsat data. Further work needs to be done relating vegetation

type to visible, infrared, and passive and active microwave data.
Biomass Models

Visible/Infrared Region

Because infrared leaf reflectance is stronyly influenced by the

number of leaves, which in turn is related to plant hiomass, many
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models have been developed using a combination of visible/infrared

reflectance data, Only & few significant models are mentioned here.
The transformed vegetation index (TVI) has been used primarily as

an estimator of rangeland biomass (Rouse et al., 1973; Deering et al.,

1975). The model was expressed as

W1 =\ {Hs87 = M358 + 0.5 (10)

where MSS7 and 5 are radiances from Landsat bands 7 (0.8-1.1 ym) and &

(0.6-0.7 ym), respectively. The ratio was used as a normalizing term
to remove temporal index variations, such as illumipration differences
due to aerosols and solar angle, and 0.5 was added to keep the term
under the square root from going negative. A modification of the
index involved replacing band 6 (0.7-0.8 un) data for band 7. The
modified index was TVI6., Both were well correlated to green biomass.

Kauth and Thomas (1976) developed transformation matrices which
converted Landsat data for cultivated agricultural areas to data which
enhanced greenness, brightness, and yellowness. By comparing trans-
formed data from temporal scenes, the progresgion of phenology fol-
lowed the shape of a "tasseled cap." Converting the matrices to index

GVI = -0,290 MSS4 - 0,562 MSS5 + 0,600 MSS6 + 0,491 MSS7 (11)
and the brightness index was

SBI = 0.433 MSS4 + 0,632 MSS5 + 0.586 MSS6 + 0,264 MSS7 (12)
where MS5S4, 5, 6 and 7 refer to Landsat bands 4, 5, 6 and 7 digita’
counts. GVI had been found to be highly correlated to leaf area index
(Richardson and Wiegand, 1977).
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Another vegetation ‘index model used to estimate biomasy is the
perpendicular vegetation index (PV]), developed by Richardson and Wie-
gand (1977). PVI was calculated by the equation

PVI = \/(Ragb - RpS)2 + (Rgg7 - Rp7)2 (13)

where Rp is the reflectance for a candidate vegetation point for Land-
sat bands MSS5 and MSS7 anq Rog is the reflectance of soil background
corresponding to the same candidate vegetation point, Figure 3 des-
cribes the principle of the perpendicular vegetation index. Simply,
PVI is the perpendicular distance from a given radiance in bands 5 and
7 to the soil background line. It was demonstrated by Richardson and
Wiegand (1977) that PVI6 and TVI6 (where Landsat band 6 is used
instead of band 7) are both highly correlated to leaf area index.

Microwave Models

Work is just beginning in relating micréwave data to vegetation
characteristics. Brakke et al. (1981) related corn, wheat, and sor-
ghun characteristics, such as plant moisture content, crop height, and
leaf area index, go microwave, visible and near-infrared data. The
authors determined dry matter was highly correlated with o° at look
angles of 70° off padir, Jackson et al. (1981) compared biomass
estimates to changes in the slope of regression lines relating éoil
moisture and normalized passive microwave brightness temperature. As
biomass increased, the sensitivity of normajized brightness tempera-

ture related to soil moisture decreased.
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Literature Overview

From the research reported, it is evident that simultaneous data
using visible, infrared, and microwave bands have rarely been col-
lected., More data sets of visible, infrared, and microwave data are
needed to compare against vegetation type and characteristics, such as
biomass. According to theory, microwave frequencies should be sensi-
tive to different vegetation characteristics (primarily geometric and
dielectric properties) than characteristics seen by visible and infra-
red data. As a result, classification accuracies and biomass esti-
mates should improve by including microwave (active or passive) bands

with visible and infrared.
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DATA COLLECTION

Aircraft data were collected near Guymon, Oklahoma in August,
1978, and near Dalhait, Texas in August 1980, Data collection and

processing will be described for each site.
Guymon Aircraft and Ground ilata

In August, 1978, aircraft and ground data were collected in com-
mercial agricultural fields located from 3 to 20 km southwest of Guy-
mon, Oklahoma and near Clayton, N:w Mexico (Figures 4a through 4h).
vegetative cover in the area included bare soil, corn, sorghum, and
. alfalfa. Soil type was generally a silty clay (averaging 35% clay,
35% silt, and 30% sand) with many areas having a caliche (CaCOj3) layer
near the surface. Different tillage practices ailowed spectral data
from sorghum and bare fields having rows perpendicular and parallel to
the flight line to be analyzed. Aircraft and ground data were col-
lected in fields along four flight lines covering 38.4 km? area (1.6 x
24 km).

Aircraft data collected by the NASA C-130 on August 2, 5, 8, 11,
14, and 17 consisted of (1) seven scatterometer frequencies and polar-
izations, (2) three passive microwave frequencies and polarizations,
(3) five visible/near-infrared/thermal channels, (4) Barnes PRT-5
radiometer thermal data, and (5) black and white aerial photography.
The aircraft flew at least twice at 500 m over each flight line on
each flight day. Also, on August 5, the C-130 collected only scatte;-

ometer data over fields near Clayton, New Mexico.
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The scatterometer frequencies and polarizations included (1) 13.3
GHz W (K band) vertically polarized transmitted and received), (2)
4,75 GHz HH (C band horizonially polarized transmitted and received),
(3) 4.75 GHz HV (horizontally polarized transmitted and vertically
polarized received), (4) 1.6 GHz HH (L band), (5) 1.6 GHz Hv, (6) 0.4
GHz HH (P band), and (7) 0.4 GHz HV. These frequencies will be
referred to as K band, C band, L band or P band throughout the
remainder of this report. The polarizations will be referred to as
1ike pole or cross pole instead of HH or HV, respectively. Data from
eight look angles from nadir were processed for each frequency: 5°,
10°, 15°, 20°, 25°, 35°, 40°, 45°,

Passive microwave data were collected in 1.6 GHz (L band) hori-
zontal polarization, and 4.75 GHz (€ band) vertical and horizontal
polarizations. These data will be referred to as L band horizontal, C
band vertical and C band horizontal, respectively.

Five channels from the modular multispectral scanner (M2S) were
available: (1) channel 4: 0.548-0.583 um, (2) channel 7: 0.662-0,701
wn, (3) channel 8: 0,703-0.747 um, (4) channel 9: 0,770-0.863 um, and
(5) channel 11: 8.000-12,.080 pm.

Barnes PRT-5 measurements werc also included to calibrate the M2S
thermal band (channel 8) and normalize the passive microwave bright-
ness temperature,

The sensors were operating at different times throughout the
study because the active microwave data would interfere with the pas-
sive microwave data. Windy conditions cn August 14 also forced a

third run over each flight line. Table 1 lists the operating sensors
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TABLE 1, Operating Sensors for the Guymon, 0Ok)ahoma Study

Date Line Run Operating Sensors
-8/2/7§' 1-4 1 all scatterometer; M2S; PRT-5; C-band
8/5/78 passive microwave; photos;
8/8/78
8/11/78 1-4 2 K-band, C-band, P-band scatterometer; and
8/17/178 L-band passive microwave; PRT-5; photos
-5714/73- 1-4 1 all scatterometer; M2S; C-hand passive

microwave; PRT-5; photos

1-4 2 K-band, C-band, P-band scatterometer; and

L-band passive microwave; PRT-5; photos

1-4 3 all scatterometer; M2S; C-band passive

microwave; PRT-5, photos
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for each flight line and run. Field averages were determined for each
sensor. Because of the uncertainty of the target and look angle,
field averages were deleted from the data set when the NASA C-130 had
excessive roil (greater than 3.5°) and/or drift (greater than 9°).
Soil moisture samples were colignted at eight points approximate-
ly 200 m apart within each 32 hectare field (Figure 5). Samples col-
lected at each site were 0-2 cm, 2-5 cm, 5-9 cm, 9-15 cm, 0-15 cm,
15-30 cm, and 30-45 cm (Figure 6). Field averages were calculated for
each depth. Data included in calculating the average were from sites
within the maximum sensor swath width., In the majority of the cases,
data from all eight sample points were inciuded. Approximately one-
third of the fields were sampled on flight days. As a result, mois-
ture averages for fields not sampled on flight days were interpolated
from time series plots &f measurements taken the day before or the day
after flights. Field notes of tillage, center pivot location and
wet/dry areas were also tabulated. No biomass informapion was cul-
lected at Guymon; however, photographs of crops at the time of the
experiment were éo]lected which provided a rough estimate of crop

cover,
Dalhart Aircraft and Ground Data

During August, 1980, aircraft and ground data were collected in
commercid] agricultural fields 20 km northwest of Dalhart, Texas (Fig-
ures 7a through 7e). Figure 7a represents the general view of the
area showing the relative locations of 7b, ¢ and d. Figure 7¢ is the
12gend which describes the crop types. Crop types within the area

included bare soil, pasture, corn, alfalfa &nd sorghum. The soil type
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ORIGINAL PAGE 15
OF POOR QUALITY

DALHART, TEXAS 1980
LEGEND FOR FIELD MAPS 1,2 &3

Bare: wheat stubble ——— Corn
disked wheat stubble Alfalfa
mulched wheat stubble Pasture

Millet Grazed

Milo

Flight line markers
Corner reflectors

Rain gauges

Vegetation sample sites

e x p |

Row direction was east-west for all sample fields with row crops.

APPROXIMATE SCALE 1: 49000

2 \ 0 o 2 MILES
IRy I BN _ —
2000 0 2000 4000 6000 8000 10000 12000 14000 FEET
R )
2 } ! 0 2 KILOMETERS
RN —

Prepared by the Texas AGM University Remote Sensing Center. Base dato compiled from USGS topegraphic maps,
R.S.C. teom field notas and NASA contracted aerial photography collected August 1418, 1980,

FIG. 7b Légend for the Dalhart, Texas field maps.
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of the surface 30 cm was a sandy loam (75% sand, 10% silt and 15%
clay). The commercial fields were located along two flight lines
covering a 36 km? area (1.6 x 22.5 km).

Aircraft data, which were collected by the NASA C-130 on Augqust
14, 16, and 18, consisted of (1) seven scatterometer frequencies and
polarizations, (2) three passive microwave radjometer frequencies and
polarizations, (3) eight visible, near- middle- and far-infrared
bands, (4) Barnes PRT-5 radiometer thermal data, and (5) color infra-
red aerjal photography. The aircraft flew twice at 500 m over each
flight line and once at 1500 m over the general area.

The scatterometer frequencies and polarizations are the same as
the scatterometer sensors at Dalhart. For each scatterometer, data
were processed at the same look angles analyzed at Guymon: 5°, 10°,
15°, 20°, 25°, 35°, 40°, 45°,

The passive microwave radiometer frequencies and polarizations
operating over Dalhart were the same channels operating over Guymon:
L band horizontal and C-band horizontal and vertical polarizations.
The L band passive microwave radiometer used at Dalhart was not the
same instrument used at Guymon.

The eight channels of NSO01 scanner data (simulated thematic
mapper bands) included channel 1: 0.45-0.52 um, channel 2: 0.52-0,60
ym, channel 3: 0.63-0.69 un, channel 4: 0,76-0.90 ym, channel 5:
1.00-1.30 un, chanpel 6: 1.55-1.75 um, channel 7: 2,08-2.35 um, and
channel 8: 10.40-12,50 um. The channels are similar to the proposed
data channels of the thematic mapper aboard Landsat D. Channel 7

(M2S) matches well with channel 3 (NS001); channel 9 (M2S) matches
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with channel 4 (NSOOl); and channel 11 (M2S) matches with channel 8
(NS001).

The sensors were operating at different times compared to the
Guymon study. For example, at Dalhart all scatterometers were on
during the first run, while at Guymon selected scatterometer sensors
operated at 211 times. Table 2 lists the operating sensors for each
flight line and run. Field averages were determined for each field.
Again, field averages of the sensor data were deleted from the data
set when the aircraft had excessive roll (greater than 3.5°) and/or
drift (greater than 9°).

The ground data consisted only of soil moisture samples, biomass
data, and photographs of crops. The soil moisture sampling scheme was
similar to Guymon except for minor modification of the depth intervals
and time of sampling. First, the 5-9 and 9-15 cm sampling depths were
combined into a 5-15 sampling depth. Second, fields were sampled less
intensively on each flight day. And finally, each field was sampled
every other day, rather than every third day. Two flights were flown
on the same day (8/16/80). The rest of the soil moisture sampling
scheme was similar to the Guymon study.

Biomass samples were collected within each soil moisture sampling
field along the flight lines in addition to several alfalfa and sor-
ghum fields just south of the flight lines. The sampling locations
are shown in Figure 7¢c, d and e. Samples were collected from a 1 m?

area representative of biomass conditions in the field.
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TABLE 2.
Date Line
8/14/80 | 11
12
11
12
13
[8/16/80 | 11
(2
flights)
and 12
8/18/80
11
12
13

Operating Sensors for the Dalhart, Texas Study

Operating Sensors

scatterometers, NSOOl, PRT-5, color IR
photos

scatterometers, NS001, PRT-5, color IR
photos

passive microwave, NSOO1, PRT-5, color IR
photos

passive microwave, NSO01, PRT-5, color IR
photos

NS001, PRT-5, and coler IR photos
passive microwave, NS00l, PRT-5, color IR
photos

passive microwave, NSOO1, PRT-5, color
IR photos

scatterometers, NSO01, PRT-5, color IR
photos

scatterometers, NSO0l, PRT-5, color IR
photos

NS001, PRT-5, and color IR photos
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Scatterometer Processing

Scatterometer data were collected aboard the NASA C-130 in analog
form on a l4-track tape. Copies of the tape were later sent to Texas
A4M University/Remote Sensing Center for processing, which consisted
of two phases (Figure 8). The initial processing converted the ana-
log data to digital values and copied the digital data onto 9-track
magnetic tapes. The second phase processed the digital data using
software which calculated the scattering coefficient (0% for each
look angle at given time intervals. Data were processed so that a
cell size roughly had a length of 25 m for K band, 38 m for £ band, 50
m for L band, and 75 m for P band. The processing software was des-
cribed by Claassen et al, (1979) and Clark and Newton (1979). Cross-
over effects from the like-polarized data to the cross-polarized L
band data were removed using a %fechnique described by Blanchard and
Theis (1981),

The cross-over effect is due to the inability to construct
receivers which detect microwave energy in a single polarization. In
actuality, a single polarized transmitter emits energy in one polari-
zation when upon interacting with the surface is further modified and
is received in two polarizations, thus influencing the cross- as well
as the like-polarized data. Elanchard and Theis (1981) modeled the
effect of the signal impurity on the cross-poiarized data and effec-
tively calculated a correction factor for the small look angles.

After ﬁ}ocessing scatterometer data, field start and stop times

were determined for each frequency and polarization from line plots of
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o° versus time, and aerial photographs. Times were adjusted by
shifting the start/stop times at least 0.5 seconds toward the field
center to insure full scatterometer coverage within the field. The
final start and stop times defined the field boundary and were used in
determining firld averages for each frequency, polarization, and look
angle, Time frames during excessive aircraft roll and drift (roll
greater than 3,5°; drift greater than 9°) were noted and data from
affected look angles were deleted from further analysis.

No known technigue or mechanism was available to calibrate all of
the scatterometers. Consequently, any temporal variation in ¢° was
assumed to indicate either soil moisture, roughness, or vegetation

changes.
NS001/M2s Processing

The data were processed onto 9-track t.apes at NASA/Johnson Space
Center. Included with the surface data were calibration data
consisting of digital counts from looks at constant radiance targets
within the sensor.‘ The calibration data were then used to convert
digital counts to radiance. To minimize processing costs, only data
fromn the first runs were processed,

Since radiance is a function of the solar angle, a corrnction
factor was needed before comparing crop radiance differences. All the
Dalhart data were normalized to August 18--the day with the smallest
solar zenith angle; Guymon data were adjusted to August 11 zenith

angle conditions. The correction factor used was
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R

(14)
cos o
where Ry and Rc are the non-normalized and normalized radiance

values, respectively, and ¢ is the solar zenith angle.
Passive Microwave Processing

The raw analog data collected aboard the aircarft were converted
to digital uncorrected brightness temperatures at NASA/Goddard Space
Fight Center (GSFC). Corrected brightness temperatures (Tg) were
calculated from an equation developed at NASA/JSC (0'Neill, 1981):

L, AT

T ( .
Uhy-p2 1 - p2

(15)

=1l ST (L) - e T

B R

where t is the transmittance of the radome, e i;'the emissivity of the
radome, Ty is the uncorrected brightness temperature based on raw
digital counts, L is antenna cable Tloss factor, T 1is an antenna
temperature factor, TR is the radome temperature factor, r? is an
internal parameter for each frequency, and T, is the self-emission
of the receiver. For the Dalhart L band horizontal data, the radome
terms are omitted since the sensor used on these flights was operating
in the open rear door of the aircraft. The various constants used in
the ¢ . tion were determined from flights over homogeneous areas.
Once brightness temperatures were calculated, line plots of Tg ver-
sus time were produced and field start and stop times were determined
from the plots. The times defining field boundaries used for scatter-
ometer data were also used in calculating fields averages for each

frequency and polarization.
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ANALYSIS
Techniques

Once field averages had been calculated for each sensor and soil
moisture depth, the ground and aircraft data sets were merged. Each
problem mentioned in the objectives and research subsection was
analyzed.

In the first problem, the major task was to note sensor variables
which responded well to differences in crop type. Analysis techniques
included a Duncan's multiple range technique, and graphical analysis--
spectrums and response changes as a function of time {Cooley and
Lohnes, 1971). Both Dalhart and Guymon spectral data sets were ana-
lyzed. The results consisted of a list of sensor variables which are
sansitive to crop type differences. From this set, linear combina-
tions were developed which should enhance crop discrimination sensi-
tivity.

The procedure to solve the second problem used unsupervised
(based on a minimized distance criterion) classification techniques to
discriminate crops. A hierarchical (tree) classification system was
developed using separation criterion emerging from the unsupervised
techniques. Individual spectral bands and combinations, such as TVI,
PVI, and other visible/infrared and scatterometer combinations, were
analyzed. The supervised classification technique was developed using
August 2 and 17, 1978 and August 14 and 18, 1980, data. The model was
then tested on August 5. 8, 11 and 14, 1978 and August 16, 1980

spectral data. The unsupervised classification technique used all
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Guymon and Dalhart data sets. From the unsupervised technique,
tree-classification models (dendrograms) were developed for the Guymon
and Dalhart data sets. The dendrograms were constructed using the
same separation criterion used in the unsupervisea i« hnique. For
example, if the separation criterion between two clusters were of
differences in the L band cross pole data, then this variable was used
in the dendrogram model to separate groups. The dendrograms at both
locations were compared and similarities noted, which may be appli-
cable in developing a multifrequency dendrogram classification model.

The third problem was solved by developing linear step-wise re-
gression, supervised and unsupervised crop classification and biomass
estimation models to see if microwave data could improve classifica-
tion and biomass estimation accuracy. Models using only visible/
infrared data were compared to models which included visible/infrared
and microwave data. Any microwave sensor or combination which was
more strongly related to crop type differences or biomass estimation
than other visible/infrared variables or combinations suggested an
improvement over present techniques using only visible and infrared
data. The linear step-wise models used spectral data from Guymon and
Dalhart. The supervised and unsupervised classification models were
developed and tested on the same spectral data set as mentioned for
problem 2.

The fourth problem analyzed the variability of the classification
and biomass estimation models developed in problems 2 and 3, and
associated the variability with biomass differences (phenological
differences) or soil moisture differences. The basic analysis

0

technique was graphical analysis of ¢ versus look angle and visible/
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infrared responses due to different growth stages or different soil
moisture regimes. The results gave an indication of the model utility
under different phenological and moisture regimes. If the model out-
put variability was tho large, the model was adjusted to remove influ-
encing effects. This physically involves reducing the component vari-
ances of soil moisture and roughness, leaving vegetation variance as
the major component of the total variance. Care was taken not to
remove variance created by different biophases o stress conditions.
The results from each problem were merged to give an overall view
of classification improvements that are possible with combinations of
visible, infrared and microwave data, and similar improvements that

can be made in biomass estimation.
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RESULTS

With the analysis divided into four problems, the results from
each problem will be discussed separately. But preceding each prob-

lem, a discussion of biomass and final yield conditions is in order.
Guymon Crop Condition

A wide range of growing conditions was evident at Guymon. Irri-
gated sorghum fields ranged in height from 20 c¢cm to 1 m, and in growth
stage from just emerging (fields 7 and 8) to anthesis (field 1X). Two
irrigated alfalfa fields (fields 22 and 27) were cut on August 17, the
last measurement day. Alfalfa height ranged from 15 cm to 60 cm. One
of the bare fields (field 2X) was tilled extensively on the last
flight day where furrows were as deep as 30 cmn. Two bare fieids were
irrigated during the experiment (fields 6 and 14). Most of the other
vegetated fields were also irrigated.

Since no biomass or yield data were collected from Guymon, all
biomass data were inferred using present visible/infrared

combinations, such as PVI and TVI.
Dalhart Biomass and Crop Yield

The 1980 crop year proved to be a below normal year in crop bio-
mass and yield due to extremely high temperatures and shortage of
moisture during critical growth stages (Table 3). Corn fields were in
the tasseling stage and the millet field was just beginning to enter
the heading stage during the experiment period. With maximum air
temperatures near 40° C, the yields were reduced as much as 50%
compared to 1979 yields.
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TABLE 3. Dalhart hiomass and crop yield

it .
4]

g el

Wet Dry Corn
Crop Biomass Biomass Yield Height Popul.
Field Type _ (g/m%)  (g/m®) (Kg/Ha) (m) (plants/m)
1/2 (Healthy)  Corn 6915.1  1259.8 4287 2.1-2.4 6
1/2 (Stressed) Corn 2005.7 411.1 0 1.8 6
3/4 Millet  797.5 120.6 1500 0.3
5/6 Pasture 125.3 16.2 - 0.05
7/8 Corn 7891.1 1340.6 5676 2.1-2.4 10
9/10 Corn 7665.3 1280.4 5499 2.1-2.4 7
11/12 Corn 5892.7 1148.6 9245 2.1-2.4 7
17/18(Wheat) Stubble  365.2 340.5 - 0.3
V1 Sorghum  642.0 139.8 - 0.9-1,2
V2 Sorghum 1268.2 305.0 3500 0.9-1.2
V3 Sorghum 2117.0 387.4 - 1.2
V4 Sorghum 4804.3 844,2 - 2.1
Vb Alfalfa  945.3 108.7 - 0,3-0.6
V6 Sorghum  801.6 173.9 - 0.6-0.9
V7 Alfalfa 218.2 62.8 - 0.15
V8 Alfalfa 1202.7 128.3 - 0.9
V9 Alfalfa 897.7 95.0 - 0.8
V10 Alfalfa 524.7 54.1 - 0.6
Vil Alfalfa 946.5 113.1 - 0.8
vi2 Alfalfa 556.0 66.7 - 0.6
V13 Alfalfa 814.9 115.4 - 0.8
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The biomass samples were generally related to final crop yields--
higher biomass indicated higher yields. The exception was field 11/12
where corn yield was the highest, but biomass was third highest. The

discrepancy is likely in the unrepresentative biomass sample,
Problem 1

The easiest method of graphical analysis of crop type differences
was through spectral analysis. Returns from each spectral channel for
each field were compared and differences attributed to soil moisture,
roughness or vegetation. Several examples of spectra are given in
Figures 9 through 11. The range of radiance for the visible and
infrared region (bands 1-7) is 0 to 3.0 mw cm~? steradian-!; the tem-
perature range for the thermal (band 8 or 5) and microwave brightness
temperature (BT) is 220° to 325°K. The normalized brightness tempera-
ture (E) ranged from 0.70 to 1.0 and the scatterometer response (K
band to P band) for like (H) and cross (V) pole data ranges from -60
to 0 db. The soil moisture field averages (SM) ranged from 0 to 25%
by volume for each sampling depth (0-2 cm = A, 2-5 cm = B). The scat-
terometer 40° look angle was arbitrarily selected because of the
strong relationship with vegetaticn as determined through other
studies reported in the literature.

Examples of mature corn (field 2) and millet fields (field 3)
with similar surface soil moisture conditions (approximately 9% by
volume) are illustrated in Figure 9. The largest difference was in
the C, L, and P band active microwave data--as large as 6 db in the L
. band cross pole data. Band 4 data also showed a difference of 0.3 mw

cm~2 steradian-!. No NS00l data was collected in the corn in bands
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6 and 7. Under wetter conditions in the corn (Field 8) the difference
was enhanced in several frequencies and the maximum difference in
return was 15 db in the P band cross pole data. The difference in the
L band cros; pole and bands 4 and 5§ (NSOO1) remained the same. Conse-~
quently, the major variation in o° at the 40° Juok angle in L band
cross pole data appeared to be caused by vegetation. Responses from
like-polarized microwave data were not very sensitive to the crop type
differences.

Examples of bare soil, pasture, and wheat stubble having similar
surface moisture are shown in Figure 10. Only minor differences
occurred in the visible and infrared bands, especially in bands 4 and
6. Band 6 and 7 data were unavailable for field 15. Other bands
which had differences were L band like and cross pole and C band cross
pole scatterometer data. These differences are likely due to surface
roughness differences between the fields. The wheat stubble and pas-
ture fields were smoother than the other tilled bare fields. The
smoother fields consequently acted as a spectral reflector giving a
lower o° at the 40° look angle.

Comparing the response differences between vegetated and non-
vegetation fields, several spectral regions were significant (Figure
11). Obvious differences were in bands 4, 5, and 6 of the NS00l
data. Possible combinations using these bands may prove to be helpful
in discriminating vegetation from non-vegetation. In addition, all of
the active microwave channels were able to distinguish vegetative dif-
ferences to some degree of success. The most significant differences
occurred in the C band and L band ¢ values--as much as 12 db in the L

band cross pole data.
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An interesting anomaly demonstrating stressed and non-stressed
conditions was evident in corn fields 1 and 2. Parts of the field
were stressed as a result of a faulty irrigation system which did not
apply adequate amounts of water in several areas through the growing
season. A black and white aerial photo of the field is shown in Fig-
ure 12. Approximately 30-50% of the field was undergoing moisture
stress. The stressed areas essentially had no grain yield; thus the
total yield represented yield of the healthy areas. The visible/
infrared spectra showed significant differences between healthy and
unhealthy corn in several bands (Figure 13), The differences were
especially significant (0.3 mw cm=? ster-!) in NSOO1 channels 4, 5,
and 7, suggesting possible combinations using these bands may indicate
biomass differences or stress conditions.

At Guymon, the crop types were different--alfalfa, sorghum, and
bare soil. Examples of bare soil (field 10), mature sorghum (field
1X), and alfalfa (field 4) spectra having similar surface soil mois-
ture conditions are shown in Figure 14, Reflectance in the visible
and infrared differed significantly between vegetated and non-vege-
tated fields (as much as 6-10 nw cm~2 ster~!), Differences in the
active microwave, especially L, C and P band were also indicative of
crop types differences. For example, a difference of 9 db in the L
and P band like pole data was commcn between sorghum and bare soil or
sorghum and alfalfa. Part of the difference may be due to roughness
variability in the soil surface. Also some microwave frequencies may
be penetrating through the canopy and detecting tillage direction.
The sorghun responses in field 1X figure 14 were from a field with

rows perpendicular to the flight line. An example of a response from
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FIG., 12 An infrared aerial photo [scale 1:45,000) of stressed
corn fields (fields 1 and 2) at Dalhart. The healthy
are dark shaded and the stressed areas are light shaded.
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FIG. 13 Spectra comparing healthy and stressed corn at Dalhart. No
microwave comparisons could be made.
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a sorghum field with rows parallel to the flight Jine (field 2A) is
given in Figure 15. The most significant differences were in the C
"band like pole and L band data--a 5db difference., The near infrared
band indicated field 2A had less canopy cover. Wetter conditions also
affected the return., For example, the spectra from a wet bare soil,
field 14 (Figure 16) was similar to specira for a dry sorghum field
(field 2A), especially in the scatterometer like pole data. Conse-
quently, responses which include roughness and soil moisfure differ-
ences are masking the crop type differences.

Soil moisture differences were removed from .he analysis of data
from Clayton, New Mexicc since the entire area had been saturated with
a uniform rainfall on a large area of uniform soils. As a result of
the rains, every field had approximately the same high soil moisture
content, thus 1leaving only roughness and vegetation to affect the
active microwave return. Assuming tillage practices were similar be-
tween crop types (corn and sorghum), the roughness effect is also min-
imized, leaving only vegetation effacts. Analysis of the spectra from
four corn (Cl through C4) and two sorghum fields, Ml and M2 (Figures
17 and 18) indicated that scatterometer L and P band like and cross
pole data discriminated between corn and sorghum well. Corn tended to
have higher returns in the L and P band data as compared to the
returns from sorghum fields. Other frequencies had smaller or no res-
ponse difference between corn and sorghum.

Statistical analysis of the Dalhart and Guymon data sets, using
Duncan's Multiple Range Technique confirmed results noted in graphical
analysis. The charinels which discriminated the crops at Dathart best

were the K, C and L band active microwave data at look angles from 40°
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and 45° off padir (Table 4). The visible and infrared bands were able
to discriminate between vegetated and non-vegetated fields very well,
but not differences within the vegetated fields. At Guymon, the same
active microwave frequencies did the best job of discriminating crops
(Table 5). Fields and crops with higher biomass had the higher res-
ponse, while fields with little or no biomass had the lower response.
However, roughness also played an important role as indicated by dif-
ferences between sorghum fields having perpendicular and parallel
rows. The roughness effect was reduced in the cross-polarized data,
thus suggesting the L band cross pole and C band cross pole active
microwave data as possibly the best microwave frequencies and polari-
zations to use.

Another means of demonstrating the effect of vegetation in the
active microwave region was analyzing line plots of the data (¢° as a
function of time). An example of three fields having roughly the
same surface soil moisture jis given in Figures 19 and 20. Data from a
near (10°) and far (40°) look angle were plotted. The area covered
fields V6, 1 and 19, on 8/16/80 at Dalhart, Texas. The crop types
represented included sorghum (field V6), corn, (field 1) and bare soil
(field 19). Crop type. differences were enhanced at the far 1look
angles, especially in the C, L and P bhand data. The responses from
the near look angles tended to be fairly stable along the flight line,
especially at the lower frequencies.

Summarizing, in addition to several visible/infrared channels,
active microwave frequencies (C, L and P band) are sensitive to crop
type differences between selected crop pairs. For instance, L band

and P band discriminated between sorghum and corn, while C band did
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TABLE 4. Results of Duncan's Multiple Range Test for Dalhart active

microwave data

40" look angle

45 look angle

Crop K band like pole Mean K band like pole Mean
Corn -7.1 a -7.1 a
Millet -9.1 b -8.8 b
Weeds and Bare Soil =10.9 ¢ Weeds and Bare Soil -10.6 ¢
Bare Soil -11.3 ¢ Bare Soil -10.9 ¢
Pasture -14.0 d -13.6 d
Wheat Stubble -14.6 d Wheat Stubble -14.3 d

|. band like pole L band like pole
Corn -22.4 a -23.1 a
Weeds and Bare Soil -29.8 a Weeds and Bare Soil -30.9 b
Millet -30.6 b -31.9 b
Bare Soil -30.7 b Bare Soil -32.9 b
Pasture ~34,7 ¢ -36.8 ¢
Wheat Stubble -36.2 ¢ Wheat Stubble ~37.3 ¢

L band cross pole L. band cross pole
Corn -28.9 a -28.6
Bare Soil -39.,5 ¢ Weeds and Bare Soil -39.3
Weeds and Bare Soil -39.7 ¢ Bare Soil -41.2
Wheat Stubble -44,2 d , -44.6
Pasture -44,2 d Wheat Stubble -48.8

C band like pole C band like pole

Corn 2.6 a -4.1 a
Weeds and Bare Soil 7.5 bc Weeds and Bare Soil -8,7 a
Bare Soil -8.0 b Bare Soil «10.1 b
Pasture -11.6 ¢ -13.2 ¢
Wheat Stubble -12.9 ¢ Wheat Stubble -15.4 d




TABLE 4, (Continued)

40° Look Angle 45° Look Angle
C band cross pole C band cross pole

Corn =5.6 a Corn -6,0 a
Millet -11.4 b Millet -11.5 b
Weeds and Bare Soi) -14.4 b ¢ Weeds and Bare Soil -14.0 b
Wheat Stubble -17.6 b ¢ Bare Soil -17.4 b
Bare Soi) -17.8 ¢ Wheat Stubble -18.1 b
Pasture -19.5 ¢ Pasture -19.2 b

P band like pole Mean P band 1ike pole Mean
Corn -28,7 a Corn -28.9 a
Weeds and Bare Soil -35.1 b Weeds and Bare Soil -36.3 b
Wheat Stubble -35.3 b Wheat Stubble -37.3 b
Millet -36.2 b Millet -37.6 b
Bare Soil -37.3 b Bare Soil -38.0 b
Pasture -37.5 b Pasture -38.5 b

P band cross pole P band cross pole
Corn -43.9 a Corn -43,9 a
Weeds and Bare Soil -47.6 Weeds and Bare Soil -52,.9 b
Wheat Stubble . =52.7 Bare Soil -54.2 b
Bare Soil -52.8 Millet -54,2 b
Millet -52.9 Wheat Stubble -54.8 b
Pasture -54.9 ¢ Pasture -55.1 b
*The treatment means followed by the same letter in each column are not

significantly different at the 5% probability level of Duncan's
Multiple Range Test.
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TABLE 5, Results of Duncan's Multiple Range Test for Guymon active
microwave data

oo

Crop 40° Look Angle Mean Crop 45Y Look Angle Mean
K band like pole K band like pole
Sorghum(perp. rows) -7.1 a Sorghum (perp. rows) -1.7
Sorghum{paral. rows) -9.5 b Sorghum (paral. rows) -9,7
Bare Soil -12.1 ¢ Bare Soil -12.3
Alfalfa -12.1 ¢ Alfalfa -12.5
L band like pole L band like pole
Sorghum(perp. rows) -9.3 a Sorghum (perp. rows) -11.9
Sorghum(paral. rows) -18.1 b Sorghum (paral. rows) =-19.2
Bare Soil -18.2 b Bare Soil -21.1
Alfalfa -20.5 b Alfalfa ~21.9
L band cross pole l._band cross pole
Sorghum(perp. rows) -19.1 a Sorghum (perp. rows) -20,2
Sorghum(paral. rows) -21.5 a Sorghum (paral. rows) -22.4
Bare Soil -27.1 b Al falfa -27.9
Alfalfa -27.7 b Bare Soil -28,5
C band like pole C band like pole
Sorghum{perp. rows) -8.2 a Sorghum (perp. rows) -10.3
Sorghum(paral. rows) -12.5 b Sorghum (paral. rows) =-13.7
Alfalfa -14.2 b Alfalfa -15.4
Bare Soil -15.2 b Bare Soil -16.3
C band cross pole C band cross pole
Sorghum(perp. rows) -17.2 a Sorghum (perp. rows) -19.5
Sorghum{paral. rows) -19.6 a b Sorghum (paral. rows) -22.0
Alfalfa -22.6 b Al falfa -23.7
Bare Soil -26.9 ¢ Bare Soil ~28.7
P band like pole P band like pole
Sorghum (perp. rows) -27.8 a Sorghum (perp. rows) =23.7
Bare Soil -31.4 b Bare Soil -30.3
Sorghum (paral. rows) =-31.5 b Sorghum (paral. rows) -32.0
Alfalfa -35.6 ¢

Alfalfa -35.1

77

oo ToU o OoO0T e

T oUT

(g = gl = g -1



TABLE 5, (Continued)

P band cross pole P band cross pole
Sorghum (perp. rows) -37,2 a Sorghum (perp, rows) =-34.3 a
Sorghum (paral, rows) =-38.5 a Sorghum (paral. rows) =-37.4 a
- Alfalfa -46.5 b Bare Soil -45.6 b
Bare Soi) -47.4 b Alfalfa -46,5 b

*The treatiment means followed by the same ietter in each column are not
significantly different at the 5% probability level of Duncan's
Multiple Range Test.
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not, C band discriminated between bare soi) and alfalfa while K, L
and P bands did not discriminate batween this pair, All bands dis-
criminated between corn and bare soil., Soil moisture and roughness
had an effect on the active microwave responses, but the vegetation
effect gernerally predominated at the far look angles (greater than
35°).

Problem 2

To develop the proper combination for analyzing crop type differ-
ences in a tree-classification model, a hierarchical (unsupervised)
clustering routine was used. The routine was based on a cluster
criterion of a minimum Euciidean distance from the mean of the
cluster. By going through the same classifying criteria used within
the routine, individual channels or combinations which separated
individual clusters were detected. By following this technique
through several iterations, a dendrogram (tree-classification system)
using visible, infrared, and microwave data was developed. Data from
crop discriminating scatterometer frequencies and polarizations at 40°
luok angles were included with the visible/infrared data (omitting
thermal) at Guymon and Dalhart. In addition, a dendrogram was devel-
oped from the Dalhart spectral data set using the scatterometer 40°
look angle and only bands 2, 3, and 4 from the NS00l data. This ana-
lysis was done to allow unbiased comparisons of classification accur-
acy between the Dalhart and Guymon data sets. Active microwave data
from the 40° look angle was used because the data from this look angle
was most sensitive to crop type differences (results from the previous

problem).
81



Results from the Dalhart dendrogram using the active microwave
bands and NS001 bands 2, 3 and 4 indicated that C and L band cross
pole data can classify reasonably well without visible and near infra-
red information (Figure 21). The largest error was separating wheat
stwsle and pasture from bare soil. Allowing these three groups to be
riassified the same, the overall accuracy was 78%. The first separa-
tion criterion used differences in the L band cross pole 40°, Took
angle data to separate corn and sorghum, (class 1) from weeds, pas-
ture, bare soil, and wheat stubble. The second criterion again used
differences in the sum of L band and C band cross pole 40° look angle
data to separate millet, corn and sorghum (class 2) from millet, pas-
ture, wheat stubble and weeds. The third criterion used the same sum
to separate pasture, wheat stubble and bare soil (class 3) from other
weeds, pasture and bare soil. Then the last criterion used was C band
cross pole data to separate pasture, wheat stubble and bare soil
(class 5) from weeds and bare soil (class 4). The difference between
the bare fields in class 4 and 5 was the class 4 bare fields included
some weeds while class 5 bare fields did not. Consequently, responses
in class 4 appear to be sensitive to low biomass levels.

Using all of the NS00l with active microwave data, the &ccuracy
improved to 80% as more information was gathered in NSOO1l bands 3, 4,
5 and 6. The dendrogram was different in that most of the criterion

In spite of the different crop types and visible/infrared bands,
a similar dendrogram to the one using all NSOO1 data was developed at
Guymon (Figure 23). The first criteriort level used the same type of
data as Dalhart--L band cross pole. These steps separated.corn and
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sorghum from other crops. The next criterion used differences in the
sunm of C and L band cross pole data. The last two steps used M2S band
9 data to separate vegetation from bare soil. The overall accuracy of
the model was 70%. One bare field, 10, was frequently classified with
fields having vegetation. The reason for the misclassification was
due to the presence of weeds within the field late in the experiment.
The similarity between the two models is striking. Fields with high
biomass were separated from other fields using microwave data and
vegetation was separated from bare soil using visible and infrared
data. The similarity will be discussed further in the next section.

A problem arose when data sets from both Guymon and Dalhart were
combined. Due to the fact the visible and infrared regions did not
match and no calibration of the scatterometer data was available, no

dendrogram for the combined data set was developed.
Problem 3

This problem deals with both crop classification and biomass
estimations. One technique used to determine the utility of microwave
data in classification was to make a comparison between unsupervised
classification result accuracies using visible, infrared and microwave
data and accuracies using only visible and infrared data. As men-
tioned in the previous subsection, cluster analysis using microwave,
visible, and infrared data had classification accuracies equal to or
greater than 70%. Using only visible/infrared data, the classifica-
tion accuracies decreased to 65% at Guymon and 78% at Dalhart. The
tree-classification system using visible and infrared data at Dalhart

and Guymon are given in Figures 24 and 25, respectively. The major
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misclassification using visible and infrared data were high biomass
fields being classified as one group. For 1instance, at Guymon
twenty-one observations of alfalfa and twenty-two observations of sor-
ghun fields at different biophases were classified into one group.
Consequently, result comparisons from the unsupervised technique
proved that inclusion of microwave data enhanced classification
accuracy.

Supervised classification (discriminant analysis) results also
indicated microwave data improved classification accuracy. The con-
tingency table results from classifying fields on August 16 using only
NSOO1 data from August 14 and 18 as the training classifier is given
in Table 6a. The overall accuracy was 73%. By including K band like
pole and L band cross pole data the accuracy increased to 92% (Table
6b). To make unbiased comparisons with the Guymon spectral data sets,
NSOO1 bands 2, 3 and 4 were analyzed., Following the same techniques,
the August 16 classifier accuracy was 81% (Table 7a). By including K
and L band cross pole active microwave data, the accuracy improved
only slightly to 84% (Table 7b). No known reason explained the dis-
crepancy between results using all or parts of the NSO01 data.

At Guymon, spectral data from August 2 and 17 were used as inputs
into the training classifier, and the classifier was tested on August
6§, 8, 11 and 14 spectral data. Using only M2 visible and infrared
data, the classification accuracy was 88% (Table 8a). By including K
band 1like pole and L band cross pole data the accuracy remained the
same 88% (Table 8b). Consequently, supervised classification results
using the Dalhart and Guymon spectral data sets indicated inclusion of

microwave data with visible/infrared data maintained or improved
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TABLE 6. Dalhart discriminant analysis results using (a) all NS00l
channels and (b) all NS001 channels plus K hand 1ike pole and
L band cross pole (40° Jook angle) data from August 14 and 18

as a training classifier.

testing of the model,

(a)

The results are from August 16

Number of Observations Classified into Crop Types:

*Accuracy of 73%

From Crop Types: Bare] Wheat | Weeds and
Corn| Soil| Stubble| Bare Soil |Pasture |Millet|Weeds

Corn 16 0 0 0 0 0 0
Bare Soil 0] 16 0 0 0 0 0
Wheat Stubble 0 4 0 0 0 0 0
Weeds and Bare

Soil 0 3 0 0 0 0 0
Pasture 0 4 0 0 0 0 0
Millet 0 0 0 0 0 4 0
Weeds 0 0 0 0 2 2 0

b

(b) Number of Observations Classified into Crop Types:
From Crop Types: Bare| Weeds and ‘Wheat

Corn|{ Soil| Bare Soil {Pasture [Millet| Stubble{Weeds

Corn 16 0 0 0 0 0 0
Bare Soil 01 0 0 0 0 0
Weeds and Bare

Soil cl 4 0 0 0 0 0
Pasture 0 0 0 4 0 0 0
Millet 0 0 0 0 4 0 0
Wheat Stubble 0] 0 0 0 0 4 0
Weeds 0 0 0 0 1 0 0

*Accuracy of 92%
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TABLE 7. Dalnart discriminant analysis using (a) NSOO1 channels 2, 3,
and 4 and (b) NS001 channels 2, 3 and 4 and K band 1ike pole
and L band cross pole data.
the model tested on August 1F spectral data.

Contingency table results from

(a

) Number of Observations Classified into Crop Types:

From Crop Types: Bare| Weeds and , Wheat

Corn| Soil| Bare Suil }Pasture {Millet|Weeds| Stubble
Corn 16 0 0 0 0 0 0
Bare Soil 0] 12 0 0 0 0 0
Weeds and Bare ‘

Soil 0 0 3 0 0 1 0
Pasture 0 0 0 3 0 1 0
Millet 0 0 0 0 0 4 0
Weeds 0 0 0 0 0 4 0
Wheat Stubble 0 4 0 0 0 0 0

*Accuracy of 81%

(a
‘ Number of Observations Classified into Crop Types:
From Crop Types: Bare| Weeds and Wheat
Corn| Soil| Bare Soil |Pasture |Millet|Weeds| Stubble

Corn | 151 0 0 0 1 0 0
Bare Soijl 01 12 0 0 0 0 0
Weeds and Bare

Soil 0 3 1 0 0 0 0
Pasture 0 0 0 4 0 0 0
Millet 0 0 ] 0 4 0 0
Weeds 0 0 1 0 ) 0 0
Wheat Stubble 0 4 0 2 (i 0 0
Sorghum 3 1 0 0 0 0 )

*Accuracy of 84%
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TABLE 8.

Discriminant Analysis of Guymon visible/infi. ~2d data using
August 2 and 17 data as the training classifier,

Results

from classification of August 5, 8, 11, and 14 data.

(a)

Mimber of Observations Classified into Crop Types:

From Crop Types: Alfalfa Bare Paral, Sorghum Perp, Sorghum
Alfalfa 12 0 3 1
Bare 0 32 4 1
Parallel Row

Sorqhum 1 1 18 1
Perpendicular

Sorghum 1 0 2 21

*Accuracy 1s 88% (assuming parallel sorghum and perpendicular sorghum

are one group)

(b)

Number of Observations Ciassified into Crop Types:

A aded

Bare

From Crop Types: Alfaifa Paral. Sorghum Perp. Sorghum
Alfalfa 9 0 2 1
Bare 0 23 2 2
Parallel Row
Sorghum 1 1 8 6
Perpendicular Row ,
Sorghum 0 0 0 19

*Accuracy is 88% (assuning parallel sorghum and perpendicular sorghum

are one group)
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classification accuracy compared to using only visible a&nd near
infrared data.

Using step-wide regression techniques to determine the utility of
microwave data, an increasr in the coefficient of determination using
microwave data is apparent (Tables 9 and 10). At Guymon and Dalhart,
the C band active microwave data were especially sensitive to crop
types differences.

Bionass estimation was the second portion of the problem and the
results from the previous section have already indicated that combina-
tions of red and near-infrared data may help in estimating biomass.
Two such combinations described previously are the perpendicular vege-
tation index (PVI) and the transformed vegetation index (TVI).

In spite of the difference in the sensor wavelength regions, the
soil regression l1ines for both Guymon and Dalhart data sets were quite
similar.  Consequently, it was felt PVI and TVI were reasonably
comparable at Guymon and Dalhart. The equations used to calculate PVI

at Guymon and Dalhart were

PVI = \[(RGS - Z15)2 + (RG7 - Z25)2 (16)
RGS = (0.176 * Z15) + (0.381 * 225) (17)
R67 = (0,381 * 715) + (0.825 * 725) (18)

where 715 is the scene radiance from band 9 at Guymon or band 3 at

Dalhart, and Z25 is the scene radiance from band 8 at Guymon or band 5

at Dalhart. Both combinations were strongly related to total biomass

at Dalhart (Figure 26) with PVI showing slightly greater sensitivity

at higher biomass levels. Due to the higher sensitivity and strong

relationship to hiomass, PVI was used as the basic combination which
93



TABLE 9, Dalhart stepwise classification regression equations using

(a)

(b)

(a) al1 NSOC1 band (Ch) data and (b) all NSOO1 data plus
scatterometer data (40 look angle) (Crop Type: 10 = corn,
8 = sorghum, 6 = weeds, 4 = bare soil and weeds, 3 =

pasture, 2 = wheat stubble, 1 = bare soil].

R?
Crop Type = ~(Ch3*1,99)+(Ch4*0,71)+3.03 .94
Crop Type = (Cn2*1.78)-(Ch3*3,60)+(Ch4*0,60)+3.2€ 0,95
Crop Type » (Ch2*1,90)-(Ch3*3,66)+(Ch4*0),63)-(Ch5*0,07)
+3.26 0.95
Crop Type = (Ch2*1.87)~(Ch3*3,69)+(Cha*0,60)-(Ch6*0.05)
P +(Ch7*5.1{)£3.31 0,95
Crop Type = ~(Ch1*0,04)+(Ch2%1,87)-(Ch3*3,67)+(Ch4*0.€0)
=(Ch6*0.05)+(Ch7*0,12)+3.35 0.95
Crop Type = (Ch7*1,08)+(Ch5*1.44)+3,38 .96
~(Ch3%2,07)+(Ch4*0,65)+3.85 , 0,95
~(Ch3*1,25)+(Ch5*1,39)-(Ch7*0.60)+3,06 0.97
Crop Type = (cn2*2,03),éCh3*3,9Q)+(gn4*g,54)+3!83 0.96
{Ch2*1,84)~(Ch3*2,33)+(Ch5*%1,19)-(Ch7*0.77)+3.33 0.97

Crop Type = -(Ch3*2.35)+(Ch4*0,63)-(L band cross pole
*0,13)+(C band like pole*0.13)+0.88 0.96
-{2h3*0,73)-(Ch4*0,56)+(Ch5%2,33)-(Ch7*0.96) 0,98

(Ch2*2,38)~(Ch3*4,34)+(Cha%0,56)+(L band like
+(C band like pole*0.13)+4,22

Crop Type = (Ch2*i.73)-(Ch3*3,83)+(Ch4*0,55)+(L band 1ike
pole*0,14)-(L band cross pole*0.19)+(C band 0.98
1ike pole*0,07) 0.96

(Ch1*4.20)-(ch3*0,91)-(Cha*1,13)+(Ch5+3.82)
~(Ch6*0,58)-(Ch7*0,92)+2.71

un

Crop Type
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TABLE 10, Guymon stepwise classification regression equations using
(a) only visible/infrared data and (b) scatterometer (40°
Tork angle) and visible/infrared data [Crop Type: 8=sorghum,
4=alfalfa, O=bare soil].

(a) Crop Type
(b) Crop Type
Crop Type

Crop Type

Crop Type

Crop Type

1

11

n

n

(M2SCh 4%17,350)-(M2SCh 7*14,76)-
(M2SCh 8+%1.30)+2.85

(P band cross pole*0.26)+(C band cross
pole*0.49)+26,147

(P band cross pole*0.27)-(C band like
pole*0.57)+(C band cross pole*0.88)+28.07

(L band cross pole*.25)+(L band ¢ross pole
*0,23)-(C band 1{se pole*0.76)+(C band cross
pole*0,80)+28.22

(K band 1ike pole*0.30)+i. band cross pole
*0,29)+(P band cross pole*0,18)-(C band like
pole*0,89)+(C band cross pole*).74)+27.39

(M2S1Ch5%0.27)+(K band like pole*0.32)+(L band

cross pole*0,32)+(P band cross pole*0).17)-(C band
like pole*0.41)+(C band cross pole*0.60)+24.2
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0.59

0.67

0.73

0.74

0.75

0.76
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other combinations were compared. However, the "saturated" zone of
PVI and TVI, where sensitivity decreased for moderate biomass changes,
was at biowass levels above 1000 g/m?%,

The relationship between PVI, TVI and crop yield is less signifi-
cant than the relationship to biomass due a dependence on crop type
(Figure 27). This dependency is expected because the economic or
grain yield comprises a different proportion of the biological or
vegetative yield for each crop type.

With the additional narrow wavelength bands for the NSN0O01, a
study of the intercorrelations between bands was needed to evaluate
other potential visible/infrared combinations. Figures 28 through 36
display intercorrelations of each NSOO1 band to bands 1, 2 and 3. The
relationship between band 4 and 6 (1.00-1.30 wn and 1.55-1.76 um)
(Figure 33) wés similar to the visible/near infrared relationship,
which PVl is based. A1l of the bare soil and low biomass fields fell
along the lower right line; corn and dense sorghum fields fell along
the left side of the Tline. The refationship suggested another
possible PVI relationship using a near-infrared band and a water

absorption band. The equations used to calculate the new PVI were

PVI6 = \/(RG4 - 720)2 + (RG6 - 735)2 (19)
RG4 = -1.919 + 0.365(Z35) + 0.158(220) (20)
RGE = 0.831 + 0.842(Z35) + 0.365(220) (21)

whare 220 is the scene radiance in NSOO1 band 4 and 235 is the scene
radiance in NSOO1 band 6. A plot of the new PVI versus total bjomass
is shown in Figure 37. A definite similarity exists between the

conventional PVI and PVI64. A plot of the two combinations revealed
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FIG. 37 The relationship between total (wet) biomass (g/m?2) and
PV164 at Dalhart.
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the new PVI (PVI64) gave more information on corn fields compared to
PVI and TVI--corn gave a higher PVI64 compared to PVI and TVI (Figure
38). Not enough ground data were collected to explain this PVI
difference,

Figures 39 through 41 demonstrate the variability of PVI64 within
corn, alfaifa and sorghum fields at Dalhart. The most striking exam-
ple was the detection of moisture stressed areas in corn fields 1 and
2. The severely stressed ring-shaped areas within the field are
demonstrated by the red color which corresponded to PVI64 values of 4
or less. Dark green areas represent healthy areas within the field
with PVI6G4 values of 6 or greater. Biomass differences are also evi-
dent in several alfalfa and sorghum fields.,

Summarizing, spectral data from Dalhart suggo:led the additional
proposed thematic mapper wavelength regions provided slightly more
information on crop characteristics than present techniques using
visible/infrared data.

As mentioned, a normalization technique applied to the active
microwave data was needed to help remove roughness and soil moisture
effects in the Guymon and Dalhart data sets. Based on the o¢° response
with look angle, as biomass increases, the vegetative response at high
1ook angles should also ircrease compared to the ¢° response from the
Jower look angies. This was especially noted in the line plots
(Figures 19 and 20). Figure 42 demonstrates this effect for L band
cross pole data from corn (high biomass) and bare soil (low biomass).
Biomass differences were strongly evident at the larger look angles,
especially greater than 15° off nadir. Figure 43 represents changes

in the L band cross pole ¢° due to soil moisture differences witisin a
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BLACK AND WHITE PHOTOGRAPH

FIG. 39 A photo indicating difference PVI64 levels within a
stressed corn field (1 and 2) at Dalhart,
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FIG, 40 A photo indicating difference PVI64 levels within a
sorghum field (VZ? at Dalhart,
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FIG, 41

A photo indicating different PVI64 levels wilhin
alfalfa fields (V11, Vi2, V13) at Dalhart,
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42 The relationship between L band cross pole o® and look
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millet field at Lalhart. Any significant soil moisture increase
caused a similar response as the biomass increased. However, by cal-
culating the difference between the response from a large and small
look angle, the soil moisture effect was diminished while maintaining
a high degree of sensitivity to diomass differences. For example, the
difference between the 40° and 10° look angles was roughly the same
under different surface (0-2 cm) mojsture conditions, 12.5 dB. The
last effect, surface roughness was minimized by analyzing cross rather
than like polarized data,

Figure 44 demonstrates active microwave returns from the same
sorghum field at two different look directions--rows paralle} and per-
pendicular to the flight line. A general shift higher was evident for
the ¢ return from rows parallel to the look direction. The differ-
ence between the near and far look angles also remained relatively
constant under different surface roughnesses. Consequently, most of
the information in the return differences between a near and far look
angle in cross-polarized data was related to crop biomass. Since ¢°
is expressed in terms of logarithms, a difference between o¢° is the
same as an arithmetic ratio (a normalization technique). Also, it was
anticipated that comparisons of differences in several frequencies and
polarizations indicated biomass differences. Comparison of several
differences (i.e. 40° L band cross pole ¢® - 10° L band cross pole oY%

0. 5° ¢ band cross pole o) indicated the ©

40° C band cross pole o
band cross pole 40° and C band cross pole 5° difference was most
independent of roughness and soil moisture and most sensitive to bio-

mass differences.
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FIG. 44 The L band cross pole o° response as a function of look
angle for the same sorghum field (field 1X) from two differ-
ent directions, the flight line parallel and perpendicular
to the tillage direction.
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Other differences, such as the L band cross pole difference he-
tween the 40° and 10° look angle, were sensitive to surface roughness
by penetrating through several alfalfa and sorghum canopies., For
example, alfalfa gave the similar index values as bare soil. Conse-
quently, the C band relationship was analyzed and is defined as the
scatterometer vegetation index (SVI).

The relationship between SVI and total biomass was similar to the
PVI/total biomass relationship (Figure 45). 'Ihe quadratic relation-
ship between SVI and total bjomass (R? = 0,88) was hetter than the
relationship between PVI and total biomass (R% = 0.74), or TVI and
total biomass (R% = 0.69). The relationship between PVI, TVI, and SVI
was generally linear with bare fields having low SVI and vegetated
fields with higher index values (Figures 46 and 47). Alfalfa fields
tended to have lower index values compared to the other vegetated
fields. The lower value indicated the scatterometer signal was either
penetrating throuch the vegetation and responding to the soil surface,
or the signal was responding to the canopy surface only. Changes of
SVI within individual fields attributable to soil moisture differences
were neqligible (Figure 48). At Dalhart, the soil moisture correction
factor for bare fields was 2 db/10% change in soil moisture (0% to
100% of field capacity); at Guymon, the factor was 4.5 db/15% change
in soil moisture (a change of 80% of field capacity). The effect was
also dependent on crop type as SVI values from fields having higher
biomass were less dependent on surface soil moisture. Correcting SVI
for soil moisture using C band passive microwave brightness tempera-
tures ‘improved the relationship only slightly (Figures 49 and 50).

Part of the variance of SVI within each crop type can be explained by
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roughness differences. For example, at Guymon, SVI values fron fields
having rows parallel to the flight line were slightly higher, 2-3 dbh,
then values from fields with rows perpendicular to the flight line.
Attempts to remove the roughness effects were fruitless as the
vegetation effect was also lost. Analysis of Figures 49 and 50
indicated that SVI was insensitive to low PVI or TVI changes; however,
at higher PVI and TVI (PVI greater than 1.5 and TVI greater than 1.06)
levels SVI became sensitive to changes in biomass. Indications also
show that SVI was slightly more sensitive to biomass changes at high
biomass levels than PVI or TVI.

Other attempts to determine combinations that normaltized the
scatterometer data proved fruitless. Consequently, each data set

could only be analyzed separately.
Problem 4

Considering the results from the previous three problems, biomass
was a strong vindicator of crop type differences within the active
microwave region--crops with greater biomass had higher active micro-
wave responses and were classified separately from other low hiomass
groups. If the tree classifcation model were applied to an agricul-
tural regjon which has a crop with different biomass or biophase, mis-
classification with other crops is likely. For example, the unsuper-
vised classification technique tended to confuse immature sorghum with
alfalfa. To fully understand the utility of the tree-classification
nodel under different biophases and adjust the classification model
for applications under different biomass levels, visible/infrared and

active microwave responses needed to be considered. The sorghum
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fields at NDalhart and Guymon covered a wide pange of biomass and bio-
phases ranging from crops that were Jjust emerging to fully headed,
Analysis of the response difference within a given crop type due to
biomass differences indicated possible errors of misciassification and
gave phystical explanation for the tree classification model.

The visible/infrared response showed a definite trend as biomass
in¢reased and crops matured. Figure 51 represents the red/near infra-
red responses at Dalhart and Guymon, respectively. In both cases,
data from bare soil and low biomass fields were linearly related. As
the crop matured, the distance from the soil line to the data point
increased,  Data from fields with the highest biomass and at the
reproductive biophase had the largest distance from the soil line.
The perpendicular distance had been defined as the perpendicular vege-
tation index (PVI). As the crop matured from heading, leaves began
to senesce and PVI decreases. No fields at Guymon or Dalhart were in
the last biophase.

The active microwave response from several fields at Dalhart--
22, V2 and V6, and 12--indicated differences at far look angles which
appeared to represent different biomass levels. Field 22 was a bare
field at Dalhart; V2 was an irrigated sorghum field at Dalhart that
had reached the heading stage; V6 was a dryland immature sorghum field
only 60 cm tall at Dalhart; and 2 was a corn field with a high biomass
at Dalhart. The K band data indicated no significant differences
between the differont biomass levels (Figure 52) while the C band
cross pole data indicated some differences (Figure 53)., The immature

sorghuny field, V2, had slightly higher returns than the bare field,
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22. The largest difference was between the vegetation (mature sor-
ghum, corn) and the bare soil--as much as 10 db in the 40° 1look
angle. The L band cross pole data also indicated some differences
between different biomass levels. Again, the corn and mature sorghum
fields had higher returns at high look angles compared to the bare and
low biomass fields--as much as 7 db (Figure 54). However, the respon-
ses at the high look angles in the P band cross pole data were sensi-
tive to fields only with high biomass (Figure 55). The analysis
therefore implied high frequency active microwave responses "satur-
ated" at relatively law biomass levels while low frequency responses
"saturated" at very high biomass levels. C band wouid then best
separate lower biomass crops, L band would separate moderate biomass
crops and P band would separate high biomass crops.

The Guymon results also tended to indicate the same situation
(Figures 56 through 59). However, roughness from row direction played
an important factor also., The best example indicating biomass differ-
ence was L band cross pole from field 1X--headed, dense sorghum, 15--
emerging sorghum, 4--alfalfa, and l4--bare soil (Figure 58). Again
the far look anygles were responding to high biomass levels. Data from
other look angles indicated that surface roughness influenced the
return by masking the vegetative differences. Attempts to eliminate
roughness effects proved to be unsuccessful, as removal of roughness
also reduced the vegetation effect.

From the analysis of both spectral data sets, a multifrequency
active microwave system using a low and high frequency could improve
classification and biomass estimation accuracy. Given the scattero-

meter vegetation index (SVI), which was strongly related to biomass
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for bare soil (field 14), alfalfa (field 4), emerging sorghum
(field 15) and headed sorghum (field 1X).
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and PVI, a similar combination using 40° P band cross cole of - P band
cross pole o was included with SVI. The resulting modified index

(SVIM) is defined as

SVIM = (40° C band cross pole - 5° C band cross pole)
+ (40° P band cross pole - 5° P band cross pole) (22)

The modified SVI was also strongly related to total biomass at Dalhart
(R = 0.73) (Figure 60). In comparison, the relationship of SVIM to
biomass at Dalhart was not as strongly reI;ted to PVI or TVI at Guymon
(Figure 61). Again, alfalfa did not have high SVI values indicating
active microwave penetration through the canopy for P band data.
Higher frequency séatterometer data may indicate the presence of dense
alfalfa fields. The SVIM responses from sorghum fields were, however,
greater than low biomass or bare fields.

With the sensitivity of the P band cross pole data to differences
in high biomass, the only change needed in the classification model
was to use P band <ross poie differences as a first step to separate
the high biomass fields from fields with medium and Jow biomass.
Higher frequency L or C band cross pole data were then used as cri-
teria to separate fields with medium and low biomass levels. Using
these criteria, the corn and dense sorghum fields at Guymon were
separated--anything having a return of -47 db or higher would be clas-
sified as corn at Dalhart and -36 db or higher at Guymon. Using these
criteria, the accuracy of the tree classifier improved slightly at

Dalhart and Guymon--81% at Dalhart and 76% at Guymon.
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SUMMARY AND CONCLUSIONS

Since the study was divided into four problems, results from each
will be discussed in detail. Also, an overview summarizing the study

and its implications will follow the dicussions of the results.,
Problem 1

The first problem determined spectral bands which were sensitive
to crop type differences. Results implied that several active micro-
wave frequencies were sensitive to crop type differences, especially
at look angles greater than 35° off nadir. The response differences
due to vegetation dominated the effects of roughness and soil mois-
ture. The most sensitive frequencies and polarizations included C
band cross pole, L band like and cross pole and P band like and cross
pole. Depending on the crop type, responses from certain frequencies
discriminated crops. For example, L and P band discriminated between
sorghum and corn, and C band was able to discriminated between alfalfa
and bare soil. Other active microwave sensors were primarily sensi-
tive to roughness or soil moisture. The visible/infrared sensors were
not as sensitive while the passive microwave data were sensitive to
soil moisture differences. The biomass differences were detected
especially well in the visible/infrared bands. Also, stressed areas
were noted using NSOO1 band 6 data (water absorption band). The
visible and infrared data were sensitive to the presence or absence of

vegetation, but not necessarily certain crop type pairs.
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Problem 2

The second problem determined the most accurate crop classifying
dendrogram for the Guymon and Dalhart spectral data. In this problen,
a relatively accurate dendrogram using active microwave, visible, and
infrared data was developed for both Guymon and Dalhart spectral data
sets. The dendrogram was based first on separating '"rough" from
"smooth" fields using active microwave data, and second, on separating
each class between the bare and low biomass fields from heavily vege-
tated fields. The preferred active microwave frequencies and polari-
zation were L and C band cross pole which were most sensitive to bio~
mass differences between crop types. Response differences in both
frequencies classified different scales of roughness. Classification
accuracies using the similar dendrograms were 77% for Dalhart and 70%
for Guymon. Data from other individual bands did not improve the
accuracy. The implication was that one model requiring data from four
bands (visible through act’ve microwave) could discriminate different
crop types with reasonable accuracy. More data sets are needed,

kowever, to thoroughly test the tree classification model.
Problem 3

Problem three determined the utility of estimating biomass and
discriminating crops using visible/infrared/microwave data compared to
visible/infrared data. The primary result in problem 3 was the
indication that microwave data improved or maintained classification

and biomass estimation accuracy in comparison to conventional
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classification. The conventional classification technique used only
visible/infrared data to classify and estimate biomass. Various sta-
tistical techniques such as discriminant analysis and step-wise
regression indicated the inclusion of active microwave aided in clas~-
sifying agricultural crops. With higher accuracy, less frequent
visible/infrared/microwave satellite or aircraft passes would be
required for an adequate estimate of crop acreage or biomass.

In addition, the proposed thematic mapper wavelength bands pro-
vided more information on vegetation than the Landsat visible/infrared
combinations. For example, a combination similar to the perpendicular
vegetation index (PVI), but using input data from the near infrared
(0.76 - 0.90 ym) and water absorption band (1.56-17.5 un) provided
additional information on corn compared to the results from broad
band MSS red and near infrared wavelengths. Not enough ground data
were collected to determine what physiological parameter within field
differences of the the new combination was detecting. The new combi-
nation, PVI64, was slightly more related to biomass than the original
combination of red and near-infrared data that had been used to calcu-
late PVI. Further studies using these bands are needed.

Finally, an active microwave vegetation index (SVI) was developed
using C band cross pole data from the 5° and 40° look angles. The
combination, which was developed to normalize the two data sets, was
highly correlated to PVI. The major implication was that use of this
combination would allow a classification and biomass estimation that
would be possible regardless of cloud conditions. It is fully recog-

nized that the sensor combination required to collect 5° and 40°

142



imagery over the same areas with active microwave is highly impracti-
cal and most likely not economically feasible. The result is, how-
ever, significant from an academic standpoint and may help in under-
standing the scattering phenomena that take place in vegetative
cover. It is significant to note that L band differences between 5°
and 40° did not respond to vegetation other than corn and sorghum
since the L band energy was penetrating through the canopy more than C
band. However, further tests of the model are needed in agricultural
regions having different management practices.

In spite of the success in discriminating crops and estimating
biomass within each data set--Guymon and Dalhart--the sets could not
be combined due to the absence of active microwave calibration. Vari-
ous attempts to normalize the data sets using combinations, such as
the SVI, were unsuccessful. Consequently, both data sets were ana-
lyzed separately. Any further experiment requiriﬁg collection of
active microwave data must include some means of calibrating the

microwave Sensors.
Problem 4

The fourth problem determined the effect of bibmass differences
on the crop classifying dendrogram developed in problem 2. Results
from problem 4 indicated that the tree-classification model was
significantly dependent upon biomass. Implications are that crops
which have similar responses at the same time of year, such as wheat
and barley may be indiscriminant. However, at certain biophases
physiological differences, such as plant water content may be detect-

able. Consequently, multi-temporal data are still needed to
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accurately separate two "“confusion" crops. To make the model even
more sensitive, multifrequency microwave data are needed to separate
even higher biomass levels. Results proved that the P band cross pole
scatterometer returns are sensitive at high biomass levels at
Dathart. Inclusion of the P band cross pole data improved crop

classification accuracy over the use of L band and C band data.
Overview

Having answered the questions posed by each problem, the
hypothesis--can microwave data help improve classification and biomass
estimation compared to present techniques using only visible and
infrared data--can be validated. Given the results from Guymon, Okla-
homa, and Dalhart, Texas, active microwave data do aid in improving

classification and biomass estimation. Results indicated that multi-

frequency active microwave data would be needed to classify multiple-

:cropped agricultural areas accurately. L and P band data can discrim-

inate between sorghum and corn; C band can discriminate between bare
soil and alfalfa but not between corn and sorghum. In addition, NS001
data indicated combinations of the water absorption band (1.55-1,75
um) and the near-infrared band (1.0-1.3 yn) gave more crop information
than the red/near infrared combinations. Accurate multispectral clas-
sification and biomass estimation models were developed from both data
sets.

However, two major factors pose problems in using active micro-
wave data--soil moisture and surface roughness. With many of the
vegetated crops heing irrigated and the non-vegetated field remaining
fallow, a bias entered into this analysis due to soil moisture differ-
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ences. The most accurate technique to remove the soil moisture effect
would be to develop & correction factor using passive microwave data
which is primarily sensitive to soil moisture changes, as inputs to
the model (Schmugge, 1979). The best method to minimize surface
roughness is to use cross-polarized active microwave data, which the-
oretically isolates the volumetric (dielectric) effects while minimiz-
ing the scattering (surface roughness) effects. Other combinations
that were developed were unable to remove the effects of roughness
alone, Attempts to remove the roughness effect also diminished the
vegetation effect.

A second problem dealt with spatial resolution. If large areas
of the world are to be covered in a short time period, satellite sys-
tems will be required. The question arises as to what should the
spatial resolution be 27d should the resolution be similar for each
frequency. Visible/infrared data often have high spatial resolution;
passive microwave data have low resolution while active microwave
resolution can be controlled by system design and processing. Many
fields around the world are tco small to be seen even by Landsat.
Consequently, by increasing spatial resolution to allow analysis of
individual fields implies extremely large amounts of both
visible/infrared microwave and active microwave data processing. With
Tower spatial resolution, knowledge of composite (fields of different
crop types, soil moisture, and surface roughness) returns within the
cell size is required. For example, what effect would the return from
a 32-hectare field have on the composite return of a 10 km resolution

cell, and can classification and biomass information be extracted from
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the larger size cells? Consequently, future studies are needed to
find the proper resolution size for reasonably accurate estimates of
vegetation using visible/infrared/microwave data,

Advantages of using microwave systems are obvious: independence
of weather and sunlight and the opportunity for fewer passes with the
visible/infrared systems due to higher classification accuracy. Roth
reasons are advantageous over present visible/infrared systems devel-
oped during the LACIE period. Some foreign agricultural areas that we
have previously been unable to monitor from a satellite due to cloud
cover could be monitored in the future. The final results would bhe
two-fold: (1) an improved world-wide agricultural production system
which would prevent another event such as the U. S./Soviet Union wheat
crisis which occurred in 1974, and (2) domestic food supply planning
would be more efficient as better production estimates would induce
better domestic storage and production, and stabilize commodity
prices.

Consequently, active microwave sensors need to be seriously con-
sidered as additional sensing tools in evaluating agricultural areas.
With the additional data, potential world food disasters may be

averted,
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APPENDIX A
DATA QUALITY, CALIBRATION, AND OMISSIONS

At both Dalhart and Guymon, data were deleted for various rea-
sons--quality and excessive aircraft attitude parameters. This chap-
ter defines the questionable sensor and soil moisture data and the
methods used for correcting the data sets., Each sensor system and

soil moisture will be discussed in detail.

NS001/M2S

Most of the visible/infrared data were of good quality at both
Dalhart and Guymon. One of the exceptions was the excessively noisy
water absorption bands (bands 6 and 7) on 8/14/80 at Dalhart. Since
no means were possible to correct the data, they Q@re eliminated from
further data analysis. Also, at Dalhart band 1 data for fields 6,8,
10,12 and 22 were deleted due to unstable calibration.

With the exception of band 9 (0.77-0.86 un) M2S data at Guymon,
the calibration information proved to be quite stable. Table Ala

Tists the equations used to convert raw digital counts to radiance

‘values. Note band 9 had three different equations applicable at dif-

ferent periods of the experiment.

A1l of the working NSO01 bands had less stable calibration infor-
mation at Dalhart. Table Alb lists the equations used to convert
digital counts to radiance values. Note that several bands had dif-
ferent calibration values on each flight day.

Calibration of the thermal band proved to be different for Guymon
and Calhart. The calibration, using the PRT-5 data, showed that at

Guymoni the low temperature calibration black body aboard the plane was

152



TABLE Al. Equations used to convert raw NSOOI/Mzs digita] counts (DC)
to radiance
Guymon (a) and Dalhart (b)

values, R, (10-% watts ocm °ster”!)

for

-4
10.46x10
5 * (DC-12)

-4
9.61x10

-4
z._é;%%%lg__~* (DC-~14)

i

n

4

i

_ 11.42x107t

a. channel 4 R =
7 R
8 R
. 9 R
9 R
9 R
b.  channel 1 R
1 R
1 R
2 R
2 R
3 R
3 R
4 R
4 R

Continued

iy S S o gt A AR

i

-4
6.98x10"" (bc-12) (8/2, 8/5, and 8/8)

o4
6;%%%12_- *(DC-10) (8/11)

-4

83850 «(nc-17) (8/14)

-4
1.96x10 *(DC-1) (8/14 & 8/16 (FI1t 1))

-4
,1.g6¥10 *(DC-1) (8/16 (Fit 2))

-4

-4

ﬁ:g%glgn- *(DC-21) (8/14 - 8/18)

-4

4. 63310 *(DC-21) (8/18)
04

5,61x10

__?%%1__‘ *(DC-29) (8/14-8/16)

-4
—§¢%%%l9~" *(DC-29) (8/18)

57— (DC-9) (8/14-8/16 (F1t 1))

11.42x10°

‘“T?T‘““”**(”C -9) (8/16 (F1t 2))
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(Continued)

4 R

5 R =
5 R =
5 R =
6 R =
6 R =
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too high while the high temperature calibration black bhody was measur-
ing the proper temperature. This implied that low surface tempera-
tures were as much as 5°C too high. At Dalhart, the opposite condi-
tion occurred. The low temperature calibration black body was reading
the proper temperature while the high temperature calibration body was
reading 5°C too low, suggesting that high surface temperatures were as
much as 5°C too low.

The normalization solar correction factors (cosej) for Dalhart
are as follows: August 14, 5.7; August 16, (flight 1), 2.0; and
(flight 2), 1.1; and August 18, 1.0. For Guymon, the normalization
solar correction factors are August 2, 1.7; August 5, 1.6; August 8,
5.0; August 11, 1.0; August 14, 1.6 and August 17, 1.6. To normalize
the two data sets, the Guymon data set required a multiplication

factor of 1.3 to roughly match the radiance values at Dalhart.

Scatterometer

Due to excessive aircraft roll and drift, several Took angles had
to be eliminated at Dalhart and Guymon due to the uncertainty of the
cell being within the field. At Dalhart, all active microwave data
from one field had to be eliminated-~field 16 on 8/18/80. Also, data
at 40° and 45° look angles off nadir from several other fields on
8/18/80 were eliminated due to excessive drift (Table A2). At Guymon,
flying conditions were much worse; consequently, data from more fields
needed to be deleted. A complete list of omitted look angles are
given in Table A3. Data from 8/11, 8/14, and 8/17/78 were most ques-

tionable.
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L12 R2 14
L11 R3 16

TABLE A2. CQuestionable scatterometer data for Dalhart
Date Field # Questionable Analysis
8/14/80 A1l data is good
8/16/80 All data is good
8/18/80 L12 R2 20,8,18 45° (drift 9°)

40, 45° (drift 11°)
All Angles
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TABLE A3. Questionable scatterometer data for Guymon
Date Field # Questionable Analysis
8/2/78 L1 Rl 2,4,6,7,8,2x,1x 40°,45° (-8° drift, 2° roll)
L2 R1  10,13,14,15,2a,2x,1x 45° §-9° drift
Ll R2 2,4,6,7,1a,2x%,1X 45° (-9° drift
L2 R2 15,17,2a 45° (-8° drift)
8/8/78 L2 R1 17, 1x all angles
L2 R2 2A all angles
L4 Rl 26 all angles
Ll R2 2,6,7 all angles
8/11/78 L1 R1  6,8,2x all angles
L3 Rl 19,27,1x all angles
L2 R1  2x, all angles
L4 R1  24,25,27 all angles
Ll R2 4,6,7,1A all angles
L3 Re 22 all angles
L2 R2 10,17 45° (-4° drift, 4° roll)
2A, 2X all angles
L4 R2 24,26,27 all angles
8/14/78 L1 R2 4 all angles
L3 R2 19 40°,45° (-8° drift, 3° roll)
L2 R2 13 45° (9° drift)
10 40°,45° (9° drift, 3° roll)
L1 R3 all fields 40°,45° (11° drift)
L3 R3 1x all angles
L2 R3 13,14 all angles
15 45° (9° drift)
8/17/78 L3 Rl 21,22 ‘ 35°,40°,45° (-12° drift
L4 Rl 2x,24,25,26,27 35°,40°,45° (-12° drift
L3 R2 21,22 all angles
1x,19,20 40°,45° (-10° drift)
L4 R2 24,25,2x 45° (-9° drift)
8/5/78 L1 Rl 2 40° ,45°
L4 R1  2x 40°,45°
L2 R2 2x 40° ,45°
L4 R2 2x 40° ,45°

*delete these same fields for passive data
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Signal cross-over between L-band polarizations was quantifiable
by Blanchard and Theis (1981). The correction in the cross-polarized
data proved to be less than 1 db for the Dalhart and Guymon data
sets. There appears to be cross-over in the P band data collected at
Guymon and Dalhart. Figure Al represents like and cross polarized
returns with look angle for the same field, 1X, which had rows
perpendicular to the flight 1ine. Note the large increase in the like
polarized data at 20° look angle. Any rapid increase of o with
increasing look angle can be directly attributed to large scale
roughness characteristics. This characteristic is most apparent in
like-polarized data; cross-polarized data suppress the roughness
effect (Blanchard and Theis, 1981). Consequently, the rapid increase
in ¢% should not appear in the cross-polarized data. Figures A2a and
A2b show P band like and cross pole responses from a milo field (25)
at Guymor. Note the absence of any large increase in o° at the 15°
look angle for the cross pole data compared with the like pole data
for the first four flight days. In the later flights the rows were
tilled and the row height was increased causing a larger increase in
o® at 15° look angle in both 1ike and cross polarizations. This is an
example of data with minimun cross-talk. The cross-polarized data

0

should have smaller decreases in ¢  with higher look angles. Note,

however, the P band response for field 1X in figure Al. At the 15°

0 occurs in both Tike and cross pole

look angle, a large increase in o
data. This suggests excessive cross-talk between the 1like- and
cross-polarized data. No attempt has been made to try and correct for
the cross-talk in the P band cross polarized data. In addition, note
the o° differences in the P band cross polarized data hetween the
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sets. There appears to be cross-over in the P band data collected at
Guymon and Dalhart. Figure Al represents like and cross polarized
returns with look angle for the same field, 1X, which had rows perpen-
dicular to the flight line. Note the large increase in the like
polarized data at 20° look angle. Any rapid increase of o? with
increasing ook angle can be directly attributed to large scale rough-
ness characteristics. This characteristic is most apparent in like-
polarized data; cross-polarized data supress the roughness effect
(Blanchard and Theis, 1981). Consequently, the rapid increase in a°
should not appear in the cross-polarized data. Figures A2a and A2b
show P band like and cross pole responses from a milo field (25) at
Guymon. Note the absence of any large increase in o’ at the 15° look
angle for the cross pole c¢ita compared with the like pole data for the
first four flight days. In the later flights the rows were tilled and
the row height was incfeased causing a larger increase 5n o¥ at 15°
look angle in both like and cross polarizations. This is an example
of data with minimum cross-talk. The cross-polarized data should have
smaller decreases in o% with higher look angles. Note, however, the P
band response for field 1X in figure Al. At the 15° look angle, a
large increase in o occurs in both like and cross pole data. This
suggests excessive cross-talk between the like- and Across-polarized
data. No attempt has been made to try and correct for the cross-talk
in the P band cross polarized data. In addition, note the o0 differ-
ences in the P band cross polarized data between the first and
fourth--flights as much as 5 db difference. For these reasons we

questioned the 0.4 GHz data, especially at Guymon.
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Figure A3 represents like and cross polarized returns from the C
and L band scatterometer for field 25 (sorghum), at Guymon. The field
was tilled with rows perpendicular to the flight line and polariza-
tion. A slight increase in return at the 20° look angle for the L
band 1ike pole and cross pole is evident, The increase suggests
again that some cross-talk may exist between the polarizations. Note
the absence of cross-talk in the C-band data. A slight increase in
the like-polarized data at 10° Jook angle off nadir is not evident in
the cross polarized data., These data suggest that the other frequen-
cies have some degree of cross-talk, but on a much smaller scale than
the P band data.

Since scatterometer power was likely different for the Guymon and
Dalhart data sets and no means exists for externally calibrating the
system, normalizing the two scatterometer data sets proved to be quite
difficult. Figures A4 through A7 represent scatterometer responses
for each frequency from two bare fields having approximately the same
surface sofl moisture and roughness at Guymon (field 14) and Nalhart
(field 19). Note the extreme difference in shift of L band like
polarized data between the different frequencies. As much as a 15 dB
difference exists between the two data sets in some instances. In
addition, the shift in the like polarizaton for all frequencies is not
constant nor is it even in the same direction. Note that in figures
A4 and A6 field 14 is higher than 19 while in Figure AS’it is slightly
lower and in Figure A7 they are alike. The far lookﬁangles appeared

to be the most comparable between data sets. Since the differences
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between data sets are not constant with look angle, normalization of
the data proved upsucessfui. However, one normalization technique
used to compare information within a data set was a data cémbination
using a o% difference between two look angles in the same data set.
Since o is based on the algorithm of o, a difference implied a ratio
between ¢--a common normalization technique. It was believed that
this technique provided much information on vegetation while minimiz-
ing, soil moisture and surface roughness effects, depending on the

frequency and polarization.

Passive Microwave (MFMR)

Since the passive microwave radiometer was oriented at a constant
angle (3° from nadir), any excessive roll would imply questionable
MFMR data. Consequently, any time the airplane had roll greater than
3.5° the field average MFMR data were deleted. Table A4 lists the
deleted data. With the exception of data from one flight line at Guy-
mon--L band data on 8/11/7" had highly erratic brightness temperatures
on one occasion--brightness temperatures were quite stable. The
highly variable brightness temperatures indicated 1local unmeasured
variations in the field. Therefore, the following fields at Guymon

were deleted from furthér analysis: fields 10, 13, 14, 15 and 17.

Soil Moisture

Each sensor has a different cell size. Consequently, to compare
data, soil moisture field averages were determined for the area
observed by each sensor by averaging only one sample located withinv
the observed area. Unfortunately, in some cases, averaging point

locations of soil moisture proved not to be a reliable field average,
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TABLE A4. Guymon and Dalhart questionable MFMR data

Date Field # % Roll
8/8/78 L2 R1 1X 5.3
8/11/78 1.3 Rl 1X 4.9
L1 R2 6 -5,1
L4 R2 24 4.9
8/14/78 L2 R1 10,17,2a 5.4,-8,-5.6
respectively
L4 R1 27 4.9
L3 R3 1X -4,.8
8/17/78 L3 R2 22 5,0
8/18/78 L1 R1 16 6.3

These fields were deleted from the MFMR plots due to excessive roll;
drift was not a factor.
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For instance, several rows were irrigated and seen by the sensors but
not sampled within the field. Also rainfall events occurred at Guymon
between sampling periods--on 8/2 and 8/8/78. An attempt was made to
correct the soil moisture by adding the amount of rainfall or irriga-
tion, assuming complete infiltration. In some cases, this correction
did a good job. But in the end the questionable soil moisture data
were deleted from the data set. The fields at Guymon with deleted
soil moisture data were for 8/2: 22, 27, 20, 25, 19, 24, 8/8: 1x, 2x,
2, 10 and 8/17: 1x, (line 2).

With the deletions, calibrations, and normalizations the Guymon
and Dalhart data sets were complete as possibie. Data for the signif-

icant channels are presented in Appendix 8 and C.
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