301 research outputs found
Open versus closed IV infusion systems: a state based model to predict risk of catheter associated blood stream infections
Objectives - To quantify the change in risk of central line associated blood stream infection (CLABSI) following the introduction of a closed infusion container in intensive care units (ICUs) in two Latin American cities. Design - A state-space model was used to describe the flow of admissions through the ICU. This approach correctly treats infection as a time-dependent covariate. Results - A closed system reduced the risk of CLABSI. The hazard ratios for the closed versus open container were between 0.15 and 0.31 (p valuesConclusions - The data reveal costs are saved and health benefits gained from fewer cases of CLABSI after adoption of a closed infusion system. Information is required on the costs of implementing the closed system widely in these settings
Hospital costs of central line-associated bloodstream infections and cost-effectiveness of closed vs. open infusion containers. The case of Intensive Care Units in Italy
Objectives: The aim was to evaluate direct health care costs of central line-associated bloodstream infections and to calculate the cost-effectiveness ratio of closed fully collapsible plastic intravenous infusion containers vs. open (glass) infusion containers.
Methods: A two-year, prospective case-control study was undertaken in four intensive care units in an Italian teaching hospital. Patients with CLABSI (cases) and patients without CLABSI (controls) were matched for admission departments, gender, age, and average severity of illness score. Costs were estimated according to micro-costing approach. In the cost effectiveness analysis, the cost component was assessed as the difference between production costs while effectiveness was measured by CLABSI rate (number of CLABSI per 1000 central line days) associated with the two infusion containers.
Results: A total of 43 cases of CLABSI were compared with 97 matched controls. The mean age of cases and controls was 62.1 and 66.6 years, respectively (p = 0.143); 56% of the cases and 57% of the controls were females (p = 0.922). The mean length of stay of cases and controls was 17.41 and 8.55 days, respectively (p < 0.001).
Overall, the mean total costs of patients with and without CLABSI were € 18,241 and € 9,087, respectively (p <0.001). On average, the extra cost for drugs was € 843 (p < 0.001), for supplies € 133 (p = 0.116), for lab tests € 171 (p < 0.001), and for specialist visits € 15 (p = 0.019). The mean extra cost for hospital stay (overhead) was € 7,180 (p < 0.001). The closed infusion container was a dominant strategy. It resulted in lower CLABSI rates (3.5 vs. 8.2 CLABSIs per 1000 central line days for closed vs. open infusion container) without any significant difference in total production costs. The higher acquisition cost of the closed infusion container was offset by savings incurred in other phases of production, especially waste management.
Conclusions: CLABSI results in considerable and significant increase in utilization of hospital resources. Use of innovative technologies such as closed infusion containers can significantly reduce the incidence of healthcare acquired infection without posing additional burden on hospital budgets
Should we use closed or open infusion containers for prevention of bloodstream infections?
<p>Abstract</p> <p>Background</p> <p>Hospitalized patients in critical care settings are at risk for bloodstream infections (BSI). Most BSIs originate from a central line (CL), and they increase length of stay, cost, and mortality. Open infusion containers may increase the risk of contamination and administration-related (CLAB) because they allow the entry of air into the system, thereby also providing an opportunity for microbial entry. Closed infusion containers were designed to overcome this flaw. However, open infusion containers are still widely used throughout the world.</p> <p>The objective of the study was to determine the effect of switching from open (glass, burettes, and semi-rigid) infusion containers to closed, fully collapsible, plastic infusion containers (Viaflex<sup>®</sup>) on the rate and time to onset of central line-associated bloodstream infections CLABs.</p> <p>Methods</p> <p>An open label, prospective cohort, active healthcare-associated infection surveillance, sequential study was conducted in four ICUs in Mexico. Centers for Disease Control National Nosocomial Infections Surveillance Systems definitions were used to define device-associated infections.</p> <p>Results</p> <p>A total of 1,096 adult patients who had a central line in place for >24 hours were enrolled. The CLAB rate was significantly higher during the open versus the closed container period (16.1 versus 3.2 CLAB/1000 central line days; RR = 0.20, 95% CI = 0.11-0.36, P < 0.0001). The probability of developing CLAB remained relatively constant in the closed container period (1.4% Days 2-4 to 0.5% Days 8-10), but increased in the open container period (4.9% Days 2-4 to 5.4% Days 8-10). The chance of acquiring a CLAB was significantly decreased (81%) in the closed container period (Cox proportional hazard ratio 0.19, P < 0.0001). Mortality was statistically significantly lower during the closed versus the open container period (23.4% versus 16.1%; RR = 0.69, 95% CI = 0.54-0.88, P < 0.01).</p> <p>Conclusions</p> <p>Closed infusion containers significantly reduced CLAB rate, the probability of acquiring CLAB, and mortality.</p
Health-care associated infections rates, length of stay, and bacterial resistance in an intensive care unit of Morocco: Findings of the International Nosocomial Infection Control Consortium (INICC)
<p>Abstract</p> <p>Background</p> <p>Most studies related to healthcare-associated infection (HAI) were conducted in the developed countries. We sought to determine healthcare-associated infection rates, microbiological profile, bacterial resistance, length of stay (LOS), and extra mortality in one ICU of a hospital member of the International Infection Control Consortium (INICC) in Morocco.</p> <p>Methods</p> <p>We conducted prospective surveillance from 11/2004 to 4/2008 of HAI and determined monthly rates of central vascular catheter-associated bloodstream infection (CVC-BSI), catheter-associated urinary tract infection (CAUTI) and ventilator-associated pneumonia (VAP). CDC-NNIS definitions were applied. device-utilization rates were calculated by dividing the total number of device-days by the total number of patient-days. Rates of VAP, CVC-BSI, and CAUTI per 1000 Device-days were calculated by dividing the total number of HAI by the total number of specific Device-days and multiplying the result by 1000.</p> <p>Results</p> <p>1,731 patients hospitalized for 11,297 days acquired 251 HAIs, an overall rate of 14.5%, and 22.22 HAIs per 1,000 ICU-days. The central venous catheter-related bloodstream infections (CVC-BSI) rate found was 15.7 per 1000 catheter-days; the ventilator-associated pneumonia (VAP) rate found was 43.2 per 1,000 ventilator-days; and the catheter-associated urinary tract infections (CAUTI) rate found was 11.7 per 1,000 catheter-days.</p> <p>Overall 25.5% of all <it>Staphylococcus aureus </it>HAIs were caused by methicillin-resistant strains, 78.3% of <it>Coagulase-negative-staphylococci </it>were methicillin resistant as well. 75.0% of <it>Klebsiella </it>were resistant to ceftriaxone and 69.5% to ceftazidime. 31.9% of <it>E. Coli </it>were resistant to ceftriaxone and 21.7% to ceftazidime. 68.4% of <it>Enterobacter sp </it>were resistant to ceftriaxone, 55.6% to ceftazidime, and 10% to imipenem; 35.6% of <it>Pseudomonas sp </it>were resistant to ceftazidime and 13.5% to imipenem.</p> <p>LOS of patients was 5.1 days for those without HAI, 9.0 days for those with CVC-BSI, 10.6 days for those with VAP, and 13.7 days for those with CAUTI.</p> <p>Extra mortality was 56.7% (RR, 3.28; P =< 0.001) for VAP, 75.1% (RR, 4.02; P = 0.0027) for CVC-BSI, and 18.7% (RR, 1.75; P = 0.0218) for CAUTI.</p> <p>Conclusion</p> <p>HAI rates, LOS, mortality, and bacterial resistance were high. Even if data may not reflect accurately the clinical setting of the country, programs including surveillance, infection control, and antibiotic policy are a priority in Morocco.</p
Reconsidering the Barefoot Doctor Programme
This paper examines the widely acclaimed Barefoot Doctor campaign in China. The Barefoot Doctor Campaign has come to symbolize the success of Chinese health care to the extent that it has become a model for WHO public health strategy. Yet little has been done to understand how or whether it worked on the ground and what difficulties and contradictions emerged in its implementation. Using previously unexplored party archives as well as newly collected oral interviews, this paper moves away from a narrow focus on party politics and policy formulation by examining the reality of health care at the local level and the challenges faced by local authorities and individuals as the campaigns evolved
Drug susceptibility of Plasmodium falciparum in eastern Uganda: a longitudinal phenotypic and genotypic study
Background: Treatment and control of malaria depends on artemisinin-based combination therapies (ACTs) and is challenged by drug resistance, but thus far resistance to artemisinins and partner drugs has primarily occurred in southeast Asia. The aim of this study was to characterise antimalarial drug susceptibility of Plasmodium falciparum isolates from Tororo and Busia districts in Uganda.
Methods: In this prospective longitudinal study, P falciparum isolates were collected from patients aged 6 months or older presenting at the Tororo District Hospital (Tororo district, a site with relatively low malaria incidence) or Masafu General Hospital (Busia district, a high-incidence site) in eastern Uganda with clinical symptoms of malaria, a positive Giemsa-stained blood film for P falciparum, and no signs of severe disease. Ex-vivo susceptibilities to ten antimalarial drugs were measured using a 72-h microplate growth inhibition assay with SYBR Green detection. Relevant P falciparum genetic polymorphisms were characterised by molecular methods. We compared results with those from earlier studies in this region and searched for associations between drug susceptibility and parasite genotypes.
Findings: From June 10, 2016, to July 29, 2019, 361 P falciparum isolates were collected in the Busia district and 79 in the Tororo district from 440 participants. Of 440 total isolates, 392 (89%) successfully grew in culture and showed excellent drug susceptibility for chloroquine (median half-maximal inhibitory concentration [IC50] 20·0 nM [IQR 12·0-26·0]), monodesethylamodiaquine (7·1 nM [4·3-8·9]), pyronaridine (1·1 nM [0·7-2·3]), piperaquine (5·6 nM [3·3-8·6]), ferroquine (1·8 nM [1·5-3·3]), AQ-13 (24·0 nM [17·0-32·0]), lumefantrine (5·1 nM [3·2-7·7]), mefloquine (9·5 nM [6·6-13·0]), dihydroartemisinin (1·5 nM [1·0-2·0]), and atovaquone (0·3 nM [0·2-0·4]). Compared with results from our study in 2010-13, significant improvements in susceptibility were seen for chloroquine (median IC50 288·0 nM [IQR 122·0-607·0]; p\u3c0·0001), monodesethylamodiaquine (76·0 nM [44·0-137]; p\u3c0·0001), and piperaquine (21·0 nM [7·6-43·0]; p\u3c0·0001), a small but significant decrease in susceptibility was seen for lumefantrine (3·0 nM [1·1-7·6]; p\u3c0·0001), and no change in susceptibility was seen with dihydroartemisinin (1·3 nM [0·8-2·5]; p=0·64). Chloroquine resistance (IC50\u3e100 nM) was more common in isolates from the Tororo district (11 [15%] of 71), compared with those from the Busia district (12 [4%] of 320; p=0·0017). We showed significant increases between 2010-12 and 2016-19 in the prevalences of wild-type P falciparum multidrug resistance protein 1 (PfMDR1) Asn86Tyr from 60% (391 of 653) to 99% (418 of 422; p\u3c0·0001), PfMDR1 Asp1246Tyr from 60% (390 of 650) to 90% (371 of 419; p\u3c0·0001), and P falciparum chloroquine resistance transporter (PfCRT) Lys76Thr from 7% (44 of 675) to 87% (364 of 417; p\u3c0·0001).
Interpretation: Our results show marked changes in P falciparum drug susceptibility phenotypes and genotypes in Uganda during the past decade. These results suggest that additional changes will be seen over time and continued surveillance of susceptibility to key ACT components is warranted.
Funding: National Institutes of Health and Medicines for Malaria Venture
International Nosocomial Infection Control Consortium (INICC) report, data summary of 36 countries, for 2004-2009
The results of a surveillance study conducted by the International Nosocomial Infection Control Consortium (INICC) from January 2004 through December 2009 in 422 intensive care units (ICUs) of 36 countries in Latin America, Asia, Africa, and Europe are reported. During the 6-year study period, using Centers for Disease Control and Prevention (CDC) National Healthcare Safety Network (NHSN; formerly the National Nosocomial Infection Surveillance system [NNIS]) definitions for device-associated health care-associated infections, we gathered prospective data from 313,008 patients hospitalized in the consortium's ICUs for an aggregate of 2,194,897 ICU bed-days. Despite the fact that the use of devices in the developing countries' ICUs was remarkably similar to that reported in US ICUs in the CDC's NHSN, rates of device-associated nosocomial infection were significantly higher in the ICUs of the INICC hospitals; the pooled rate of central line-associated bloodstream infection in the INICC ICUs of 6.8 per 1,000 central line-days was more than 3-fold higher than the 2.0 per 1,000 central line-days reported in comparable US ICUs. The overall rate of ventilator-associated pneumonia also was far higher (15.8 vs 3.3 per 1,000 ventilator-days), as was the rate of catheter-associated urinary tract infection (6.3 vs. 3.3 per 1,000 catheter-days). Notably, the frequencies of resistance of Pseudomonas aeruginosa isolates to imipenem (47.2% vs 23.0%), Klebsiella pneumoniae isolates to ceftazidime (76.3% vs 27.1%), Escherichia coli isolates to ceftazidime (66.7% vs 8.1%), Staphylococcus aureus isolates to methicillin (84.4% vs 56.8%), were also higher in the consortium's ICUs, and the crude unadjusted excess mortalities of device-related infections ranged from 7.3% (for catheter-associated urinary tract infection) to 15.2% (for ventilator-associated pneumonia). Copyright (C) 2011 by the Association for Professionals in Infection Control and Epidemiology, Inc. Published by Elsevier Inc. All rights reserved
Associations between Varied Susceptibilities to PfATP4 Inhibitors and Genotypes in Ugandan Plasmodium falciparum Isolates.
Among novel compounds under recent investigation as potential new antimalarial drugs are three independently developed inhibitors of the Plasmodium falciparum P-type ATPase (PfATP4): KAE609 (cipargamin), PA92, and SJ733. We assessed ex vivo susceptibilities to these compounds of 374 fresh P. falciparum isolates collected in Tororo and Busia districts, Uganda, from 2016 to 2019. Median IC50s were 65 nM for SJ733, 9.1 nM for PA92, and 0.5 nM for KAE609. Sequencing of pfatp4 for 218 of these isolates demonstrated many nonsynonymous single nucleotide polymorphisms; the most frequent mutations were G1128R (69% of isolates mixed or mutant), Q1081K/R (68%), G223S (25%), N1045K (16%), and D1116G/N/Y (16%). The G223S mutation was associated with decreased susceptibility to SJ733, PA92, and KAE609. The D1116G/N/Y mutations were associated with decreased susceptibility to SJ733, and the presence of mutations at both codons 223 and 1116 was associated with decreased susceptibility to PA92 and SJ733. In all of these cases, absolute differences in susceptibilities of wild-type (WT) and mutant parasites were modest. Analysis of clones separated from mixed field isolates consistently identified mutant clones as less susceptible than WT. Analysis of isolates from other sites demonstrated the presence of the G223S and D1116G/N/Y mutations across Uganda. Our results indicate that malaria parasites circulating in Uganda have a number of polymorphisms in PfATP4 and that modestly decreased susceptibility to PfATP4 inhibitors is associated with some mutations now present in Ugandan parasites
Impact of Antimalarial Treatment and Chemoprevention on the Drug Sensitivity of Malaria Parasites Isolated from Ugandan Children
Changing treatment practices may be selecting for changes in the drug sensitivity of malaria parasites. We characterized ex vivo drug sensitivity and parasite polymorphisms associated with sensitivity in 459 Plasmodium falciparum samples obtained from subjects enrolled in two clinical trials in Tororo, Uganda, from 2010 to 2013. Sensitivities to chloroquine and monodesethylamodiaquine varied widely; sensitivities to quinine, dihydroartemisinin, lumefantrine, and piperaquine were generally good. Associations between ex vivo drug sensitivity and parasite polymorphisms included decreased chloroquine and monodesethylamodiaquine sensitivity and increased lumefantrine and piperaquine sensitivity with pfcrt 76T, as well as increased lumefantrine sensitivity with pfmdr1 86Y, Y184, and 1246Y. Over time, ex vivo sensitivity decreased for lumefantrine and piperaquine and increased for chloroquine, the prevalences of pfcrt K76 and pfmdr1 N86 and D1246 increased, and the prevalences of pfdhfr and pfdhps polymorphisms associated with antifolate resistance were unchanged. In recurrent infections, recent prior treatment with artemether-lumefantrine was associated with decreased ex vivo lumefantrine sensitivity and increased prevalence of pfcrt K76 and pfmdr1 N86, 184F, and D1246. In children assigned chemoprevention with monthly dihydroartemisinin-piperaquine with documented circulating piperaquine, breakthrough infections had increased the prevalence of pfmdr1 86Y and 1246Y compared to untreated controls. The noted impacts of therapy and chemoprevention on parasite polymorphisms remained significant in multivariate analysis correcting for calendar time. Overall, changes in parasite sensitivity were consistent with altered selective pressures due to changing treatment practices in Uganda. These changes may threaten the antimalarial treatment and preventive efficacies of artemether-lumefantrine and dihydroartemisinin-piperaquine, respectively
- …