6 research outputs found

    Ligand-independent activity of the ghrelin receptor modulates AMPA receptor trafficking and supports memory formation

    Get PDF
    The biological signals of hunger, satiety, and memory are interconnected. The role of the hormone ghrelin in regulating feeding and memory makes ghrelin receptors attractive targets for associated disorders. We investigated the effects of the high ligand-independent activity of the ghrelin receptor GHS-R1a on the physiology of excitatory synapses in the hippocampus. Blocking this activity produced a decrease in the synaptic content of AMPA receptors in hippocampal neurons and a reduction in GluA1 phosphorylation at Ser845. Reducing the ligand-independent activity of GHS-R1a increased the surface diffusion of AMPA receptors and impaired AMPA receptor–dependent synaptic delivery induced by chemical long-term potentiation. Accordingly, we found that blocking this GHS-R1a activity impaired spatial and recognition memory in mice. These observations support a role for the ligand-independent activity of GHS-R1a in regulating AMPA receptor trafficking under basal conditions and in the context of synaptic plasticity that underlies learning

    Pharmacokinetic Benefits of 3,4-Dimethoxy Substitution of a Phenyl Ring and Design of Isosteres Yielding Orally Available Cathepsin K Inhibitors

    No full text
    Rational structure-based design has yielded highly potent inhibitors of cathepsin K (Cat K) with excellent physical properties, selectivity profiles, and pharmacokinetics. Compounds with a 3,4-(CH<sub>3</sub>O)<sub>2</sub>Ph motif, such as <b>31</b>, were found to have excellent metabolic stability and absorption profiles. Through metabolite identification studies, a reactive metabolite risk was identified with this motif. Subsequent structure-based design of isoteres culminated in the discovery of an optimized and balanced inhibitor (indazole, <b>38</b>)
    corecore