412 research outputs found

    CEEPES: An Overview of the Comprehensive Economic Environmental Policy Evaluation System

    Get PDF
    The Comprehensive Economic Pesticide Policy Evaluation System (CEPPES), as CEEPES was originally called, was developed in 1986 under a cooperative agreement between the Office of Policy Analysis of the Environmental Protection Agency (OPA/EPA) and the Center for Agricultural and Rural Development at Iowa State University (CARD/ISU). CEPPES was designed to analyze agricultural and environmental policies. It was structured to accommodate the important interrelationships among environmental and agricultural policies in the United States. Integrated policy analysis can discern and demonstrate efficient strategies to attain targeted levels for the agricultural sector, human health, and environmental performance

    THE ACCUSED IS ENTERING THE COURTROOM: THE LIVE-TWEETING OF A MURDER TRIAL.

    Get PDF
    © 2017 Informa UK Limited, trading as Taylor & Francis GroupThe use of social media is now widely accepted within journalism as an outlet for news information. Live tweeting of unfolding events is standard practice. In March 2014, Oscar Pistorius went on trial in the Gauteng High Court for murder. Hundreds of journalists present began live-tweeting coverage, an unprecedented combination of international interest, permission to use technology and access which resulted in massive streams of consciousness reports of events as they unfolded. Based on a corpus of Twitter feeds of twenty-four journalists covering the trial, this study analyses the content and strategies of these feeds in order to present an understanding of how microblogging is used as a live reporting tool. This study shows the development of standardised language and strategies in reporting on Twitter, concluding that journalists adopt a narrow range of approaches, with no significant variation in terms of gender, location, or medium. This is in contrast to earlier studies in the field (Awad, 2006, Hedman, 2015; Kothari, 2010; Lariscy, Avery, Sweetser, & Howes, 2009 Lasorsa, 2012; Lasorsa, Lewis, & Holton, 2011; Sigal, 1999, Vis, 2013).Peer reviewe

    Near-infrared spectroscopy detects age-related differences in skeletal muscle oxidative function: promising implications for geroscience

    Get PDF
    Age is the greatest risk factor for chronic disease and is associated with a marked decline in functional capacity and quality of life. A key factor contributing to loss of function in older adults is the decline in skeletal muscle function. While the exact mechanism(s) remains incompletely understood, age-related mitochondrial dysfunction is thought to play a major role. To explore this question further, we studied 15 independently living seniors (age: 72 ± 5 years; m/f: 4/11; BMI: 27.6 ± 5.9) and 17 young volunteers (age: 25 ± 4 years; m/f: 8/9; BMI: 24.0 ± 3.3). Skeletal muscle oxidative function was measured in forearm muscle from the recovery kinetics of muscle oxygen consumption using near-infrared spectroscopy (NIRS). Muscle oxygen consumption was calculated as the slope of change in hemoglobin saturation during a series of rapid, supra-systolic arterial cuff occlusions following a brief bout of exercise. Aging was associated with a significant prolongation of the time constant of oxidative recovery following exercise (51.8 ± 5.4 sec vs. 37.1 ± 2.1 sec, P = 0.04, old vs. young, respectively). This finding suggests an overall reduction in mitochondrial function with age in nonlocomotor skeletal muscle. That these data were obtained using NIRS holds great promise in gerontology for quantitative assessment of skeletal muscle oxidative function at the bed side or clinic

    Angular Momentum Partitioning in the Dissociation of Diatomic Molecules

    Get PDF
    We discuss recent experiments that study the transfer of angular momentum from a projectile to the residual target in collisions between the simple diatomic molecules H2 and N2 and spin-polarized electrons or circularly-polarized photons. We observe the fluorescence of both the atomic fragments and excited molecular states, and measure the circular polarization fraction of this light, P3. The incident electron energies range from 10 to 100 eV; the incident photon energies from 33 to 38 eV

    Ebullition of methane from peatlands: Does peat act as a signal shredder?

    Get PDF
    Bubbling (ebullition) of greenhouse gases, particularly methane, from peatlands has been attributed to environmental forcings, such as changes in atmospheric pressure. However, observations from peat soils suggest that ebullition and environmental forcing may not always be correlated and that interactions between bubbles and the peat structure may be the cause of such decoupling. To investigate this possibility, we used a simple computer model (Model of Ebullition and Gas storAge) to simulate methane ebullition from a model peat. We found that lower porosity peat can store methane bubbles for lengthy periods of time, effectively buffering or moderating ebullition so that it no longer reflects bubble production signals. Our results suggest that peat structure may act as a “signal shredder” and needs to be taken into account when measuring and modeling ebullition

    Surface Deformations as Indicators of Deep Ebullition Fluxes in a Large Northern Peatland

    Get PDF
    Peatlands deform elastically during precipitation cycles by small (+/- 3 cm) oscillations in surface elevation. In contrast, we used a Global Positioning System network to measure larger oscillations that exceeded 20 cm over periods of 4 - 12 hours during two seasonal droughts at a bog and fen site in northern Minnesota. The second summer drought also triggered 19 depressuring cycles in an overpressured stratum under the bog site. The synchronicity between the largest surface deformations and the depressuring cycles indicates that both phenomena are produced by the episodic release of large volumes of gas from deep semi-elastic compartments confined by dense wood layers. We calculate that the three largest surface deformations were associated with the release of 136 g CH4 m(-2), which exceeds by an order of magnitude the annual average chamber fluxes measured at this site. Ebullition of gas from the deep peat may therefore be a large and previously unrecognized source of radiocarbon depleted methane emissions from northern peatlands

    Climatic Drivers for Multi-Decadal Shifts in Solute Transport and Methane Production Zones within a Large Peat Basin

    Get PDF
    Northern peatlands are an important source for greenhouse gases but their capacity to produce methane remains uncertain under changing climatic conditions. We therefore analyzed a 43-year time series of pore-water chemistry to determine if long-term shifts in precipitation altered the vertical transport of solutes within a large peat basin in northern Minnesota. These data suggest that rates of methane production can be finely tuned to multi-decadal shifts in precipitation that drive the vertical penetration of labile carbon substrates within the Glacial Lake Agassiz Peatlands. Tritium and cation profiles demonstrate that only the upper meter of these peat deposits was flushed by downwardly moving recharge from 1965 through 1983 during a Transitional Dry-to-Moist Period. However, a shift to a moister climate after 1984 drove surface waters much deeper, largely flushing the pore waters of all bogs and fens to depths of 2 m. Labile carbon compounds were transported downward from the rhizosphere to the basal peat at this time producing a substantial enrichment of methane in Delta C-14 with respect to the solid-phase peat from 1991 to 2008. These data indicate that labile carbon substrates can fuel deep production zones of methanogenesis that more than doubled in thickness across this large peat basin after 1984. Moreover, the entire peat profile apparently has the capacity to produce methane from labile carbon substrates depending on climate-driven modes of solute transport. Future changes in precipitation may therefore play a central role in determining the source strength of peatlands in the global methane cycle

    Electric dipole moments of Hg, Xe, Rn, Ra, Pu, and TlF induced by the nuclear Schiff moment and limits on time-reversal violating interactions

    Full text link
    We have calculated the atomic electric dipole moments (EDMs) induced in ^{199}Hg, ^{129}Xe, ^{223}Rn, ^{225}Ra, and ^{239}Pu by their respective nuclear Schiff moments S. The results are (in units 10^{-17}S(e {fm}^{3})^{-1}e cm): d(^{199}Hg)=-2.8, d(^{129}Xe)=0.38, d(^{223}Rn)=3.3, d(^{225}Ra)=-8.5, d(^{239}Pu)=-11. We have also calculated corrections to the parity- and time-invariance-violating (P,T-odd) spin-axis interaction constant in TlF. These results are important for the interpretation of atomic and molecular experiments on EDMs in terms of fundamental P,T-odd parameters.Comment: 16 page
    • …
    corecore