21,453 research outputs found

    Investigation of the fiber reinforcement of a cobalt base alloy for application at elevated temperature

    Get PDF
    Technique developed for incorporating alumina and silicon carbide fibers in cobalt base alloy for application at high temperature

    Adaptive mesh refinement with spectral accuracy for magnetohydrodynamics in two space dimensions

    Get PDF
    We examine the effect of accuracy of high-order spectral element methods, with or without adaptive mesh refinement (AMR), in the context of a classical configuration of magnetic reconnection in two space dimensions, the so-called Orszag-Tang vortex made up of a magnetic X-point centered on a stagnation point of the velocity. A recently developed spectral-element adaptive refinement incompressible magnetohydrodynamic (MHD) code is applied to simulate this problem. The MHD solver is explicit, and uses the Elsasser formulation on high-order elements. It automatically takes advantage of the adaptive grid mechanics that have been described elsewhere in the fluid context [Rosenberg, Fournier, Fischer, Pouquet, J. Comp. Phys. 215, 59-80 (2006)]; the code allows both statically refined and dynamically refined grids. Tests of the algorithm using analytic solutions are described, and comparisons of the Orszag-Tang solutions with pseudo-spectral computations are performed. We demonstrate for moderate Reynolds numbers that the algorithms using both static and refined grids reproduce the pseudo--spectral solutions quite well. We show that low-order truncation--even with a comparable number of global degrees of freedom--fails to correctly model some strong (sup--norm) quantities in this problem, even though it satisfies adequately the weak (integrated) balance diagnostics.Comment: 19 pages, 10 figures, 1 table. Submitted to New Journal of Physic

    Characterization of soft-bottom benthic habitats of the Aland islands, northern Baltic sea

    Get PDF
    Sediment surface and profile imaging (SPI) was used in combination with grab sampling of sediment (sediment type, organic content, benthic infauna) and hydrography (temperature, oxygen saturation of bottom water) to analyze and describe the soft-bottom benthic habitats of the Aland archipelago (60 degrees 00\u27 to 60 degrees 30\u27 N, 19 degrees 30\u27 to 20 degrees 30\u27 E) in the northern Baltic Sea. The SPI analysis covered 42 stations (5 to 263 m depth), from inner sheltered bays to open coastal waters, with varying sediment types (soft mud with high organic content to sandy substrates with low organic content; loss on ignition: 0.5 to 12.4%). Clustering of the sampled stations (sediment properties) yielded 3 distinct categories of sedimentary habitats: (1) inner archipelago areas and bays with high organic content of the sediment and reduced oxygen saturation in the bottom water, (2) archipelago waters with intermediate values of all analyzed parameters, and (3) open coastal sediments with low organic content and high oxygen saturation (2 deep offshore stations formed an additional group based primarily on depth). Visual analysis of the images provided information on several additional abiotic and biotic characteristics of the sediment, and significant correlations were found mainly between oxygen saturation, organic content, sediment type, shear strength (penetration of gear), surface relief and the depth of the redox potential discontinuity layer in the sediment. The sediment properties were also reflected in the zoobenthos. The correlations between parameters measured are discussed in relation to applicability of the SPI method, monitoring demands, and basic understanding of the sediment-animal relationships

    Ruthenium and osmium carbonyl clusters incorporating stannylene and stannyl ligands

    Get PDF
    The reaction of [Ru₃ (CO)₁₂] with Ph₃SnSPh in refluxing benzene furnished the bimetallic Ru-Sn compound [Ru₃(CO)₈(μ-SPh)₂(μ3-SnPh₂)(SnPh₃)₂] 1 which consists of a SnPh₂ stannylene bonded to three Ru atoms to give a planar tetra-metal core, with two peripheral SnPh₃ ligands. The stannylene ligand forms a very short bond to one Ru atom [Sn-Ru 2.538(1) Å] and very long bonds to the other two [Sn-Ru 3.074(1) Å]. The germanium compound [Ru₃(CO)₈(μ-SPh)₂(μ₃-GePh₂)(GePh₃)₂] 2 was obtained from the reaction of [Ru₃ (CO)₁₂] with Ph₃GeSPh and has a similar structure to that of 1 as evidenced by spectroscopic data. Treatment of [Os₃(CO)₁₀(MeCN)₂] with Ph₃SnSPh in refluxing benzene yielded the bimetallic Os-Sn compound [Os₃(CO)₉(μ-SPh)(μ₃-SnPh₂)(MeCN)(ƞ¹-C₆H₅)] 3. Cluster 3 has a superficially similar planar metal core, but with a different bonding mode with respect to that of 1. The Ph₂Sn group is bonded most closely to Os(2) and Os(3) [2.7862(3) and 2.7476(3) Å respectively] with a significantly longer bond to Os(1), 2.9981(3) Å indicating a weak back-donation to the Sn. The reaction of the bridging dppm compound [Ru₃(CO)₁₀(μ-dppm)] with Ph₃SnSPh afforded [Ru₃(CO)₆(μ-dppm)(μ₃-S)(μ₃-SPh)(SnPh₃)] 5. Compound 5 contains an open triangle of Ru atoms simultaneously capped by a sulfido and a PhS ligand on opposite sides of the cluster with a dppm ligand bridging one of the Ru-Ru edges and a Ph₃Sn group occupying an axial position on the Ru atom not bridged by the dppm ligand

    Molecular gas heating in Arp 299

    Get PDF
    Understanding the heating and cooling mechanisms in nearby (Ultra) luminous infrared galaxies can give us insight into the driving mechanisms in their more distant counterparts. Molecular emission lines play a crucial role in cooling excited gas, and recently, with Herschel Space Observatory we have been able to observe the rich molecular spectrum. CO is the most abundant and one of the brightest molecules in the Herschel wavelength range. CO transitions are observed with Herschel, and together, these lines trace the excitation of CO. We study Arp 299, a colliding galaxy group, with one component harboring an AGN and two more undergoing intense star formation. For Arp 299 A, we present PACS spectrometer observations of high-J CO lines up to J=20-19 and JCMT observations of 13^{13}CO and HCN to discern between UV heating and alternative heating mechanisms. There is an immediately noticeable difference in the spectra of Arp 299 A and Arp 299 B+C, with source A having brighter high-J CO transitions. This is reflected in their respective spectral energy line distributions. We find that photon-dominated regions (PDRs) are unlikely to heat all the gas since a very extreme PDR is necessary to fit the high-J CO lines. In addition, this extreme PDR does not fit the HCN observations, and the dust spectral energy distribution shows that there is not enough hot dust to match the amount expected from such an extreme PDR. Therefore, we determine that the high-J CO and HCN transitions are heated by an additional mechanism, namely cosmic ray heating, mechanical heating, or X-ray heating. We find that mechanical heating, in combination with UV heating, is the only mechanism that fits all molecular transitions. We also constrain the molecular gas mass of Arp 299 A to 3e9 Msun and find that we need 4% of the total heating to be mechanical heating, with the rest UV heating

    Evidence for Proportionate Partition Between the Magnetic Field and Hot Gas in Turbulent Cassiopeia A

    Get PDF
    We present a deep X-ray observation of the young Galactic supernova remnant Cas A, acquired with the ROSAT High Resolution Imager. This high dynamic range (232 ks) image reveals low-surface-brightness X-ray structure, which appears qualitatively similar to corresponding radio features. We consider the correlation between the X-ray and radio morphologies and its physical implications. After correcting for the inhomogeneous absorption across the remnant, we performed a point by point (4" resolution) surface brightness comparison between the X-ray and radio images. We find a strong (r = 0.75) log-log correlation, implying an overall relationship of log⁡(ΣX−ray)∝(2.21±0.05)×log⁡(Σradio)\log(\Sigma_{_{\rm X-ray}}) \propto (2.21\pm0.05) \times \log(\Sigma_{_{\rm radio}}). This is consistent with proportionate partition (and possibly equipartition) between the local magnetic field and the hot gas --- implying that Cas A's plasma is fully turbulent and continuously amplifying the magnetic field.Comment: 8 pages with embedded bitmapped figures, Accepted by ApJ Letters 5/1/9

    The association of attention deficit hyperactivity disorder with socioeconomic disadvantage: alternative explanations and evidence

    Get PDF
    addresses: ESRC Centre for Genomics in Society (Egenis) & Institute of Health Research, University of Exeter Medical School, Exeter, UK.OnlineOpen Article. This is a copy of an article published in the Journal of Child Psychology and Psychiatry. This journal is available online at: http://onlinelibrary.wiley.com/journal/10.1111/(ISSN)1469-7610Studies throughout Northern Europe, the United States and Australia have found an association between childhood attention deficit hyperactivity disorder (ADHD) and family socioeconomic disadvantage. We report further evidence for the association and review potential causal pathways that might explain the link.ESRC’s Secondary Data Analysis InitiativeNational Institute for Health Research (NIHR) Collaboration for Leadership in Applied Health Research and Care (CLAHRC) for the South West Peninsul

    A 10 GHz Quasi-Optical Grid Amplifier Using Integrated HBT Differential Pairs

    Get PDF
    We report the fabrication and testing of a 10 GHz grid amplifier utilizing sixteen GaAs chips each containing an HBT differential pair plus integral bias/feedback resistors. The overall amplifier consists of a 4x4 array of unit cells on an RT Duroid™ board having a relative permittivity of 2.2. Each unit cell consists of an emitter-coupled differential pair at the center, an input antenna which extends horizontally in both directions from the two base leads, an output antenna which extends vertically in both directions from the two collector leads, and high inductance bias lines. In operation, the active grid array is placed between a pair of crossed polarizers. The horizontally polarized input wave passes through the input polarizer and couples to the input leads. An amplified current then flows on the vertical leads, which radiate a vertically polarized amplified signal through the output polarizer. The polarizers serve dual functions, providing both input-output isolation as well as independent impedance matching for the input and output ports. The grid thus functions essentially as a free-space beam amplifier. Calculations indicate that output powers of several watts per square centimeter of grid area should be attainable with optimized structures
    • …
    corecore