947 research outputs found

    A Continuum Description of Rarefied Gas Dynamics (I)--- Derivation From Kinetic Theory

    Full text link
    We describe an asymptotic procedure for deriving continuum equations from the kinetic theory of a simple gas. As in the works of Hilbert, of Chapman and of Enskog, we expand in the mean flight time of the constituent particles of the gas, but we do not adopt the Chapman-Enskog device of simplifying the formulae at each order by using results from previous orders. In this way, we are able to derive a new set of fluid dynamical equations from kinetic theory, as we illustrate here for the relaxation model for monatomic gases. We obtain a stress tensor that contains a dynamical pressure term (or bulk viscosity) that is process-dependent and our heat current depends on the gradients of both temperature and density. On account of these features, the equations apply to a greater range of Knudsen number (the ratio of mean free path to macroscopic scale) than do the Navier-Stokes equations, as we see in the accompanying paper. In the limit of vanishing Knudsen number, our equations reduce to the usual Navier-Stokes equations with no bulk viscosity.Comment: 16 page

    Symmetries of a class of nonlinear fourth order partial differential equations

    Full text link
    In this paper we study symmetry reductions of a class of nonlinear fourth order partial differential equations \be u_{tt} = \left(\kappa u + \gamma u^2\right)_{xx} + u u_{xxxx} +\mu u_{xxtt}+\alpha u_x u_{xxx} + \beta u_{xx}^2, \ee where α\alpha, β\beta, γ\gamma, κ\kappa and μ\mu are constants. This equation may be thought of as a fourth order analogue of a generalization of the Camassa-Holm equation, about which there has been considerable recent interest. Further equation (1) is a ``Boussinesq-type'' equation which arises as a model of vibrations of an anharmonic mass-spring chain and admits both ``compacton'' and conventional solitons. A catalogue of symmetry reductions for equation (1) is obtained using the classical Lie method and the nonclassical method due to Bluman and Cole. In particular we obtain several reductions using the nonclassical method which are no} obtainable through the classical method

    Transparent, flexible, and strong 2,3-dialdehyde cellulose films with high oxygen barrier properties

    Get PDF
    2,3-Dialdehyde cellulose (DAC) of a high degree of oxidation (92% relative to AGU units) prepared by oxidation of microcrystalline cellulose with sodium periodate (48 degrees C, 19 h) is soluble in hot water. Solution casting, slow air drying, hot pressing, and reinforcement by cellulose nanocrystals afforded films (similar to 100 mu m thickness) that feature intriguing properties: they have very smooth surfaces (SEM), are highly flexible, and have good light transmittance for both the visible and near-infrared range (89-91%), high tensile strength (81-122 MPa), and modulus of elasticity (3.4-4.0 GPa) depending on hydration state and respective water content. The extraordinarily low oxygen permeation ofPeer reviewe

    Nonlinear stability of oscillatory wave fronts in chains of coupled oscillators

    Get PDF
    We present a stability theory for kink propagation in chains of coupled oscillators and a new algorithm for the numerical study of kink dynamics. The numerical solutions are computed using an equivalent integral equation instead of a system of differential equations. This avoids uncertainty about the impact of artificial boundary conditions and discretization in time. Stability results also follow from the integral version. Stable kinks have a monotone leading edge and move with a velocity larger than a critical value which depends on the damping strength.Comment: 11 figure

    Ill-posedness of degenerate dispersive equations

    Full text link
    In this article we provide numerical and analytical evidence that some degenerate dispersive partial differential equations are ill-posed. Specifically we study the K(2,2) equation ut=(u2)xxx+(u2)xu_t = (u^2)_{xxx} + (u^2)_{x} and the "degenerate Airy" equation ut=2uuxxxu_t = 2 u u_{xxx}. For K(2,2) our results are computational in nature: we conduct a series of numerical simulations which demonstrate that data which is very small in H2H^2 can be of unit size at a fixed time which is independent of the data's size. For the degenerate Airy equation, our results are fully rigorous: we prove the existence of a compactly supported self-similar solution which, when combined with certain scaling invariances, implies ill-posedness (also in H2H^2)

    On a Camassa-Holm type equation with two dependent variables

    Full text link
    We consider a generalization of the Camassa Holm (CH) equation with two dependent variables, called CH2, introduced by Liu and Zhang. We briefly provide an alternative derivation of it based on the theory of Hamiltonian structures on (the dual of) a Lie Algebra. The Lie Algebra here involved is the same algebra underlying the NLS hierarchy. We study the structural properties of the CH2 hierarchy within the bihamiltonian theory of integrable PDEs, and provide its Lax representation. Then we explicitly discuss how to construct classes of solutions, both of peakon and of algebro-geometrical type. We finally sketch the construction of a class of singular solutions, defined by setting to zero one of the two dependent variables.Comment: 22 pages, 2 figures. A few typos correcte

    Exact travelling wave solutions of a beam equation

    Get PDF
    In this paper we make a full analysis of the symmetry reductions of a beam equation by using the classical Lie method of infinitesimals and the nonclassical method. We consider travelling wave reductions depending on the form of an arbitrary function. We have found several new classes of solutions that have not been considered before: solutions expressed in terms of Jacobi elliptic functions, Wadati solitons and compactons. Several classes of coherent structures are displayed by some of the solutions: kinks, solitons, two humps compactons.17 página

    Canonical quantization of so-called non-Lagrangian systems

    Full text link
    We present an approach to the canonical quantization of systems with equations of motion that are historically called non-Lagrangian equations. Our viewpoint of this problem is the following: despite the fact that a set of differential equations cannot be directly identified with a set of Euler-Lagrange equations, one can reformulate such a set in an equivalent first-order form which can always be treated as the Euler-Lagrange equations of a certain action. We construct such an action explicitly. It turns out that in the general case the hamiltonization and canonical quantization of such an action are non-trivial problems, since the theory involves time-dependent constraints. We adopt the general approach of hamiltonization and canonical quantization for such theories (Gitman, Tyutin, 1990) to the case under consideration. There exists an ambiguity (not reduced to a total time derivative) in associating a Lagrange function with a given set of equations. We present a complete description of this ambiguity. The proposed scheme is applied to the quantization of a general quadratic theory. In addition, we consider the quantization of a damped oscillator and of a radiating point-like charge.Comment: 13 page

    Theory of Pseudomodes in Quantum Optical Processes

    Get PDF
    This paper deals with non-Markovian behaviour in atomic systems coupled to a structured reservoir of quantum EM field modes, with particular relevance to atoms interacting with the field in high Q cavities or photonic band gap materials. In cases such as the former, we show that the pseudo mode theory for single quantum reservoir excitations can be obtained by applying the Fano diagonalisation method to a system in which the atomic transitions are coupled to a discrete set of (cavity) quasimodes, which in turn are coupled to a continuum set of (external) quasimodes with slowly varying coupling constants and continuum mode density. Each pseudomode can be identified with a discrete quasimode, which gives structure to the actual reservoir of true modes via the expressions for the equivalent atom-true mode coupling constants. The quasimode theory enables cases of multiple excitation of the reservoir to now be treated via Markovian master equations for the atom-discrete quasimode system. Applications of the theory to one, two and many discrete quasimodes are made. For a simple photonic band gap model, where the reservoir structure is associated with the true mode density rather than the coupling constants, the single quantum excitation case appears to be equivalent to a case with two discrete quasimodes

    The Third wave in globalization theory

    Get PDF
    This essay examines a proposition made in the literature that there are three waves in globalization theory—the globalist, skeptical, and postskeptical or transformational waves—and argues that this division requires a new look. The essay is a critique of the third of these waves and its relationship with the second wave. Contributors to the third wave not only defend the idea of globalization from criticism by the skeptics but also try to construct a more complex and qualified theory of globalization than provided by first-wave accounts. The argument made here is that third-wave authors come to conclusions that try to defend globalization yet include qualifications that in practice reaffirm skeptical claims. This feature of the literature has been overlooked in debates and the aim of this essay is to revisit the literature and identify as well as discuss this problem. Such a presentation has political implications. Third wavers propose globalist cosmopolitan democracy when the substance of their arguments does more in practice to bolster the skeptical view of politics based on inequality and conflict, nation-states and regional blocs, and alliances of common interest or ideology rather than cosmopolitan global structures
    • …
    corecore