475 research outputs found

    On the tree-transformation power of XSLT

    Full text link
    XSLT is a standard rule-based programming language for expressing transformations of XML data. The language is currently in transition from version 1.0 to 2.0. In order to understand the computational consequences of this transition, we restrict XSLT to its pure tree-transformation capabilities. Under this focus, we observe that XSLT~1.0 was not yet a computationally complete tree-transformation language: every 1.0 program can be implemented in exponential time. A crucial new feature of version~2.0, however, which allows nodesets over temporary trees, yields completeness. We provide a formal operational semantics for XSLT programs, and establish confluence for this semantics

    The Pathways for Intelligible Speech: Multivariate and Univariate Perspectives

    Get PDF
    An anterior pathway, concerned with extracting meaning from sound, has been identified in nonhuman primates. An analogous pathway has been suggested in humans, but controversy exists concerning the degree of lateralization and the precise location where responses to intelligible speech emerge. We have demonstrated that the left anterior superior temporal sulcus (STS) responds preferentially to intelligible speech (Scott SK, Blank CC, Rosen S, Wise RJS. 2000. Identification of a pathway for intelligible speech in the left temporal lobe. Brain. 123:2400-2406.). A functional magnetic resonance imaging study in Cerebral Cortex used equivalent stimuli and univariate and multivariate analyses to argue for the greater importance of bilateral posterior when compared with the left anterior STS in responding to intelligible speech (Okada K, Rong F, Venezia J, Matchin W, Hsieh IH, Saberi K, Serences JT,Hickok G. 2010. Hierarchical organization of human auditory cortex: evidence from acoustic invariance in the response to intelligible speech. 20: 2486-2495.). Here, we also replicate our original study, demonstrating that the left anterior STS exhibits the strongest univariate response and, in decoding using the bilateral temporal cortex, contains the most informative voxels showing an increased response to intelligible speech. In contrast, in classifications using local "searchlights” and a whole brain analysis, we find greater classification accuracy in posterior rather than anterior temporal regions. Thus, we show that the precise nature of the multivariate analysis used will emphasize different response profiles associated with complex sound to speech processin

    Complementarity of information sent via different bases

    Full text link
    We discuss quantitatively the complementarity of information transmitted by a quantum system prepared in a basis state in one out of several different mutually unbiased bases (MUBs). We obtain upper bounds on the information available to a receiver who has no knowledge of which MUB was chosen by the sender. These upper bounds imply a complementarity of information encoded via different MUBs and ultimately ensure the security in quantum key distribution protocols.Comment: 9 pages, references adde

    Improved SOT (Hinode mission) high resolution solar imaging observations

    Full text link
    We consider the best today available observations of the Sun free of turbulent Earth atmospheric effects, taken with the Solar Optical Telescope (SOT) onboard the Hinode spacecraft. Both the instrumental smearing and the observed stray light are analyzed in order to improve the resolution. The Point Spread Function (PSF) corresponding to the blue continuum Broadband Filter Imager (BFI) near 450 nm is deduced by analyzing i/ the limb of the Sun and ii/ images taken during the transit of the planet Venus in 2012. A combination of Gaussian and Lorentzian functions is selected to construct a PSF in order to remove both smearing due to the instrumental diffraction effects (PSF core) and the large-angle stray light due to the spiders and central obscuration (wings of the PSF) that are responsible for the parasitic stray light. A Max-likelihood deconvolution procedure based on an optimum number of iterations is discussed. It is applied to several solar field images, including the granulation near the limb. The normal non-magnetic granulation is compared to the abnormal granulation which we call magnetic. A new feature appearing for the first time at the extreme- limb of the disk (the last 100 km) is discussed in the context of the definition of the solar edge and of the solar diameter. A single sunspot is considered in order to illustrate how effectively the restoration works on the sunspot core. A set of 125 consecutive deconvolved images is assembled in a 45 min long movie illustrating the complexity of the dynamical behavior inside and around the sunspot.Comment: 15 pages, 22 figures, 1 movi

    Arbitrary rotation and entanglement of flux SQUID qubits

    Full text link
    We propose a new approach for the arbitrary rotation of a three-level SQUID qubit and describe a new strategy for the creation of coherence transfer and entangled states between two three-level SQUID qubits. The former is succeeded by exploring the coupled-uncoupled states of the system when irradiated with two microwave pulses, and the latter is succeeded by placing the SQUID qubits into a microwave cavity and used adiabatic passage methods for their manipulation.Comment: Accepted for publication in Phys. Rev.

    Status of a Supersymmetric Flavour Violating Solution to the Solar Neutrino Puzzle with Three Generations

    Full text link
    We present a general study of a three neutrino flavour transition model based on the supersymmetric interactions which violate R-parity. These interactions induce flavour violating scattering reactions between solar matter and neutrinos. The model does not contain any vacuum mass or mixing angle for the first generation neutrino. Instead, the effective mixing in the first generation is induced via the new interactions. The model provides a natural interpretation of the atmospheric neutrino anomaly, and is consistent with reactor experiments. We determine all R-parity violating couplings which can contribute to the effective neutrino oscillations, and summarize the present laboratory bounds. Independent of the specific nature of the (supersymmetric) flavour violating model, the experimental data on the solar neutrino rates and the recoil electron energy spectrum are inconsistent with the theoretical predictions. The confidence level of the χ2\chi^2-analysis ranges between 104\sim 10^{-4} and 103\sim 10^{-3}. The incompatibility, is due to the new SNO results, and excludes the present model. We conclude that a non-vanishing vacuum mixing angle for the first generation neutrino is necessary in our model. We expect this also to apply to the solutions based on other flavour violating interactions having constraints of the same order of magnitude.Comment: 17 pages, Latex fil

    The position of graptolites within Lower Palaeozoic planktic ecosystems.

    Get PDF
    An integrated approach has been used to assess the palaeoecology of graptolites both as a discrete group and also as a part of the biota present within Ordovician and Silurian planktic realms. Study of the functional morphology of graptolites and comparisons with recent ecological analogues demonstrates that graptolites most probably filled a variety of niches as primary consumers, with modes of life related to the colony morphotype. Graptolite coloniality was extremely ordered, lacking any close morphological analogues in Recent faunas. To obtain maximum functional efficiency, graptolites would have needed varying degrees of coordinated automobility. A change in lifestyle related to ontogenetic changes was prevalent within many graptolite groups. Differing lifestyle was reflected by differing reproductive strategies, with synrhabdosomes most likely being a method for rapid asexual reproduction. Direct evidence in the form of graptolithophage 'coprolitic' bodies, as well as indirect evidence in the form of probable defensive adaptations, indicate that graptolites comprised a food item for a variety of predators. Graptolites were also hosts to a variety of parasitic organisms and provided an important nutrient source for scavenging organisms

    The biology of appetite control: Do resting metabolic rate and fat-free mass drive energy intake?

    Get PDF
    The prevailing model of homeostatic appetite control envisages two major inputs; signals from adipose tissue and from peptide hormones in the gastrointestinal tract. This model is based on the presumed major influence of adipose tissue on food intake. However, recent studies have indicated that in obese people fat-free mass (FFM) is strongly positively associated with daily energy intake and with meal size. This effect has been replicated in several independent groups varying in cultural and ethnic backgrounds, and appears to be a robust phenomenon. In contrast fat mass (FM) is weakly, or mildly negatively associated with food intake in obese people. In addition resting metabolic rate (RMR), a major component of total daily energy expenditure, is also associated with food intake. This effect has been replicated in different groups and is robust. This action is consistent with the proposal that energy requirements — reflected in RMR (and other aspects of energy expenditure) constitute a biological drive to eat. Consistent with its storage function, FM has a strong inhibitory effect on food intake in lean subjects, but this effect appears to weaken dramatically as adipose tissue increases. This formulation can account for several features of the development and maintenance of obesity and provides an alternative, and transparent, approach to the biology of appetite control
    corecore