68 research outputs found

    Frontotemporal dementia and its subtypes: a genome-wide association study

    Get PDF
    SummaryBackground Frontotemporal dementia (FTD) is a complex disorder characterised by a broad range of clinical manifestations, differential pathological signatures, and genetic variability. Mutations in three genes—MAPT, GRN, and C9orf72—have been associated with FTD. We sought to identify novel genetic risk loci associated with the disorder. Methods We did a two-stage genome-wide association study on clinical FTD, analysing samples from 3526 patients with {FTD} and 9402 healthy controls. To reduce genetic heterogeneity, all participants were of European ancestry. In the discovery phase (samples from 2154 patients with {FTD} and 4308 controls), we did separate association analyses for each {FTD} subtype (behavioural variant FTD, semantic dementia, progressive non-fluent aphasia, and {FTD} overlapping with motor neuron disease FTD-MND), followed by a meta-analysis of the entire dataset. We carried forward replication of the novel suggestive loci in an independent sample series (samples from 1372 patients and 5094 controls) and then did joint phase and brain expression and methylation quantitative trait loci analyses for the associated (p<5 × 10−8) single-nucleotide polymorphisms. Findings We identified novel associations exceeding the genome-wide significance threshold (p<5 × 10−8). Combined (joint) analyses of discovery and replication phases showed genome-wide significant association at 6p21.3, \{HLA\} locus (immune system), for rs9268877 (p=1·05 × 10−8; odds ratio=1·204 95% \{CI\} 1·11–1·30), rs9268856 (p=5·51 × 10−9; 0·809 0·76–0·86) and rs1980493 (p value=1·57 × 10−8, 0·775 0·69–0·86) in the entire cohort. We also identified a potential novel locus at 11q14, encompassing RAB38/CTSC (the transcripts of which are related to lysosomal biology), for the behavioural \{FTD\} subtype for which joint analyses showed suggestive association for rs302668 (p=2·44 × 10−7; 0·814 0·71–0·92). Analysis of expression and methylation quantitative trait loci data suggested that these loci might affect expression and methylation in cis. Interpretation Our findings suggest that immune system processes (link to 6p21.3) and possibly lysosomal and autophagy pathways (link to 11q14) are potentially involved in FTD. Our findings need to be replicated to better define the association of the newly identified loci with disease and to shed light on the pathomechanisms contributing to FTD. Funding The National Institute of Neurological Disorders and Stroke and National Institute on Aging, the Wellcome/MRC Centre on Parkinson's disease, Alzheimer's Research UK, and Texas Tech University Health Sciences Center

    Design and baseline characteristics of the finerenone in reducing cardiovascular mortality and morbidity in diabetic kidney disease trial

    Get PDF
    Background: Among people with diabetes, those with kidney disease have exceptionally high rates of cardiovascular (CV) morbidity and mortality and progression of their underlying kidney disease. Finerenone is a novel, nonsteroidal, selective mineralocorticoid receptor antagonist that has shown to reduce albuminuria in type 2 diabetes (T2D) patients with chronic kidney disease (CKD) while revealing only a low risk of hyperkalemia. However, the effect of finerenone on CV and renal outcomes has not yet been investigated in long-term trials. Patients and Methods: The Finerenone in Reducing CV Mortality and Morbidity in Diabetic Kidney Disease (FIGARO-DKD) trial aims to assess the efficacy and safety of finerenone compared to placebo at reducing clinically important CV and renal outcomes in T2D patients with CKD. FIGARO-DKD is a randomized, double-blind, placebo-controlled, parallel-group, event-driven trial running in 47 countries with an expected duration of approximately 6 years. FIGARO-DKD randomized 7,437 patients with an estimated glomerular filtration rate >= 25 mL/min/1.73 m(2) and albuminuria (urinary albumin-to-creatinine ratio >= 30 to <= 5,000 mg/g). The study has at least 90% power to detect a 20% reduction in the risk of the primary outcome (overall two-sided significance level alpha = 0.05), the composite of time to first occurrence of CV death, nonfatal myocardial infarction, nonfatal stroke, or hospitalization for heart failure. Conclusions: FIGARO-DKD will determine whether an optimally treated cohort of T2D patients with CKD at high risk of CV and renal events will experience cardiorenal benefits with the addition of finerenone to their treatment regimen. Trial Registration: EudraCT number: 2015-000950-39; ClinicalTrials.gov identifier: NCT02545049

    Mendelian randomization implies no direct causal association between leukocyte telomere length and amyotrophic lateral sclerosis

    Get PDF
    Funder: QingLan Research Project of Jiangsu for Outstanding Young TeachersFunder: Project funded by Postdoctoral Science Foundation of Xuzhou Medical UniversityFunder: Priority Academic Program Development of Jiangsu Higher Education Institutions (PAPD) for Xuzhou Medical UniversityAbstract: We employed Mendelian randomization (MR) to evaluate the causal relationship between leukocyte telomere length (LTL) and amyotrophic lateral sclerosis (ALS) with summary statistics from genome-wide association studies (n = ~ 38,000 for LTL and ~ 81,000 for ALS in the European population; n = ~ 23,000 for LTL and ~ 4,100 for ALS in the Asian population). We further evaluated mediation roles of lipids in the pathway from LTL to ALS. The odds ratio per standard deviation decrease of LTL on ALS was 1.10 (95% CI 0.93–1.31, p = 0.274) in the European population and 0.75 (95% CI 0.53–1.07, p = 0.116) in the Asian population. This null association was also detected between LTL and frontotemporal dementia in the European population. However, we found that an indirect effect of LTL on ALS might be mediated by low density lipoprotein (LDL) or total cholesterol (TC) in the European population. These results were robust against extensive sensitivity analyses. Overall, our MR study did not support the direct causal association between LTL and the ALS risk in neither population, but provided suggestive evidence for the mediation role of LDL or TC on the influence of LTL and ALS in the European population

    Metal-centered oxidations facilitate the removal of ruthenium-based olefin metathesis catalysts

    No full text
    Commercially available catalysts (SIMes)(PCy3)Cl2Ru(=CHPh) (2) and (SIMes)Cl2Ru(=CH-o-O-i-PrC6H4) (3) (SIMes = 1,3-dimesitylimidazolin-2-ylidene) were found to display reversible Ru oxidations via a series of electrochemical measurements. The redox processes enabled the catalysts to be switched between two different states of activity in ring opening metathesis polymerizations and ring closing metathesis reactions, primarily through changes in catalyst solubility. Moreover, treating a solution of 2 dissolved in C6H6/CH2Cl2/[1-butyl-3-methylimidazolium][PF6] (6:1:1.1 v/v/v) with 2,3-dichloro-5,6-dicyano-1,4-benzoquinone was found to remove &gt;99.9% of the catalyst, as determined by UV/vis spectroscopy. The methodology described herein establishes a new approach for controlling the activities displayed by commercially available olefin metathesis catalysts and for removing residual Ru species using redox-driven processes

    Olefin Metathesis Catalysts Containing Acyclic Diaminocarbenes

    No full text
    The first examples of ruthenium-based olefin metathesis catalysts containing acyclic diaminocarbene (ADC) ligands are reported. Complexes of the type (ADC)(SIMes)Cl2Ru=CHPh and (ADC)Cl2Ru=CH(2-isopropoxy)Ph (ADC = N,N&apos;-dimesityl-N,N&apos;-dimethylformaidin-2-ylidene or N,N&apos;-bis(2,6-di-isopropylphenyl)-N,N&apos;-dimethylformamidin-2-ylidene; SIMes = 1,3-dimesitylimidazolin-2-ylidene) were synthesized and studied in solution as well as in the solid state. Depending on their N-substituents and the metal center to which they were coordinated, the aforementioned ADC ligands were found to adopt different conformations. Preliminary investigations revealed that these Ru complexes exhibited high catalytic activities in a variety of olefin metathesis reactions at elevated temperatures and afforded cross-metathesis is products with significantly lower E:Z ratios than catalysts containing analogous N-hecterocyclic carbene ligands

    Block copolymer-directed assembly of bare metal oxide nanocrystals for energy-related devices

    No full text
    The properties of metal oxide nanocrystals in energy-related devices are strongly dependent on the presence and chem. nature of ligands at their surface, and the architectures they assume in electroactive layers. The article presents a comprehensive strategy to control these aspects of the electrode's design. In particular, block-copolymer (BCP) templating of bare metal oxide nanocrystals suggest a highly efficacious process that is made possible by tuning the supramol. interactions between the nanocrystal surface and the nanocrystal binding domain of the BCP templating agent. These results are qual. much improved over other schemes, whereby templating agents were used to direct the assembly of nanocrystals with non-optimized ligands at their surfaces

    N-heterocyclic carbenes: deducing sigma- and pi-contributions in Rh-catalyzed hydroboration and Pd-catalyzed coupling reactions

    No full text
    The effect of tuning the electronic properties of N-heterocyclic carbene (NHC) ligands was evaluated in multiple, mechanistically distinct, metal-mediated reactions. Hydroboration and Heck reactions, catalyzed by Rh-NHC and Pd-NHC complexes, respectively, were found to result in yields that were up to ten times lower when pi-withdrawing substituents were incorporated into the NHC backbone relative to analogues bearing sigma-withdrawing groups
    corecore