26,657 research outputs found

    Some exact analytical results and a semi-empirical formula for single electron ionization induced by ultrarelativistic heavy ions

    Get PDF
    The delta function gauge of the electromagnetic potential allows semiclassical formulas to be obtained for the probability of exciting a single electron out of the ground state in an ultrarelativistic heavy ion reaction. Exact formulas have been obtained in the limits of zero impact parameter and large, perturbative, impact parameter. The perturbative impact parameter result can be exploited to obtain a semi-empirical cross section formula of the form, sigma = A ln(gamma) + B, for single electron ionization. A and B can be evaluated for any combination of target and projectile, and the resulting simple formula is good at all ultrarelativistic energies. The analytical form of A and B elucidates a result previously found in numerical calculations: scaled ionization cross sections decrease with increasing charge of the nucleus being ionized. The cross section values obtained from the present formula are in good agreement with recent CERN SPS data from a Pb beam on various nuclear targets.Comment: 14 pages, latex, revtex source, no figure

    Time evolution of the Partridge-Barton Model

    Full text link
    The time evolution of the Partridge-Barton model in the presence of the pleiotropic constraint and deleterious somatic mutations is exactly solved for arbitrary fecundity in the context of a matricial formalism. Analytical expressions for the time dependence of the mean survival probabilities are derived. Using the fact that the asymptotic behavior for large time tt is controlled by the largest matrix eigenvalue, we obtain the steady state values for the mean survival probabilities and the Malthusian growth exponent. The mean age of the population exhibits a t1t^{-1} power law decayment. Some Monte Carlo simulations were also performed and they corroborated our theoretical results.Comment: 10 pages, Latex, 1 postscript figure, published in Phys. Rev. E 61, 5664 (2000

    The diffuse X-ray background spectrum from 3 to 50keV

    Get PDF
    The spectrum of the extragalactic diffuse X-ray background was measured with the GSFC cosmic X-ray experiment on HEAO-1 for regions of the sky away from known point sources and more than 20 deg from the galactic plane. A total exposure of 80 sq m-sec-sr is available at present. Free-free emission from an optically thin plasma of 40 plus or minus 5 keV provides an excellent description of the observed spectrum from 3 to 50 keV. This spectral shape is confirmed by measurements from 5 separate layers of three independent detectors. With an estimated absolute precision of about 10 percent, the intensity of the emission at 10 keV is 3.2 keV/keV-sq cm-sec-sr, a value consistent with the average of previously reported spectra. No other spectral features, such as iron line emission, are evident. This spectrum is not typical of known extragalactic objects. A uniform hot intergalactic medium of approximately 36 percent of the closure density of the universe would produce such a flux, although non-uniform models indicating less total matter are probably more realistic

    Satellite (Timed, Aura, Aqua) and In Situ (Meteorological Rockets, Balloons) Measurement Comparability

    Get PDF
    Measurements using the inflatable falling sphere often are requested to provide density data in support of special sounding rocket launchings into the mesosphere and thermosphere. To insure density measurements within narrow time frames and close in space, the inflatable falling sphere is launched within minutes of the major test. Sphere measurements are reliable for the most part, however, availability of these rocket systems has become more difficult and, in fact, these instruments no longer are manufactured resulting in a reduction of the meager stockpile of instruments. Sphere measurements also are used to validate remotely measured temperatures and have the advantage of measuring small-scale atmospheric features. Even so, with the dearth of remaining falling spheres perhaps it is time to consider whether the remote measurements are mature enough to stand alone. Presented are two field studies, one in 2003 from Northern Sweden and one in 2010 from the vicinity of Kwajalein Atoll that compare temperature retrievals between satellite and in situ failing spheres. The major satellite instruments employed are SABER, MLS, and AIRS. The comparisons indicate that remotely measured temperatures mimic the sphere temperature measurements quite well. The data also confirm that satellite retrievals, while not always at the exact location required for individual studies, are adaptable enough and highly useful. Although the falling sphere will provide a measurement at a specific location and time, satellites only pass a given location daily or less often. This report reveals that averaged satellite measurements can provide temperatures and densities comparable to the falling sphere

    In Situ and Satellite Measured Temperature Comparability

    Get PDF
    Following the International Geophysical Year in the late 1950's, small meteorological rockets caught the interest of scientists as a potentially inexpensive method to obtain meteorological information (density, temperature, wind) above balloon-borne radiosonde altitudes. These small rocketsondes have served many important observational roles in terms of studies conducted of atmospheric structure and processes, enabling many new ideas about the atmosphere to emerge. Although no longer manufactured a small residual inventory of meteorological rocketsondes exist for specific research projects. The value of data from meteorological rocketsondes is without question but with their disappearance data from many different satellites are filling the need, some able to resolve high-altitude temperatures quite well. However, the rocketsonde vertical profile is more localized to the launch site whereas satellites move several kilometers per second. The objective of this presentation is to compare in situ temperature data with remotely measured/retrieved temperature data. There have been a number of U.S. conducted missions utilizing the passive falling sphere data that we use to verify the comparability of retrieved temperatures from these satellites. Missions, some as early as 1991, were conducted in polar, equatorial, and mid-latitude locations. An important aspect is that a single satellite profile compared to a falling sphere profile often does not agree while high density satellite measurements when averaged over an area near the rocketsonde data area seems to be in better agreement. Radiosonde temperature data are used in the analysis when appropriat

    Consequences of wall stiffness for a beta-soft potential

    Full text link
    Modifications of the infinite square well E(5) and X(5) descriptions of transitional nuclear structure are considered. The eigenproblem for a potential with linear sloped walls is solved. The consequences of the introduction of sloped walls and of a quadratic transition operator are investigated.Comment: RevTeX 4, 8 pages, as published in Phys. Rev.

    Study of the interacting system NGC 6845

    Get PDF
    We present optical spectroscopy, B, V, R and I CCD photometry and VLA neutral hydrogen observations of the interacting quartet NGC 6845, also know as Klemola 30. NGC 6845 A, the dominant component, sports a broad and bright tidal bridge and a faint tidal tail, which bifurcate. The tidal bridge has a (B-I) color bluer than that of NGC 6845 A inner disk. Five strong condensations, identified as HII regions brighter than the brightest in our Galaxy, are found along the tidal bridge, with the two most luminous located at the bridge tip. Two giant HII regions, comparable to 30 Dor, are located where the tidal bridge and the tidal tail joint the disk of NGC 6845 A. Since the age of the HII regions are 3-8 Myr, star formation has been occurring along the tidal bridge and the tidal arm well after they had begun to be torn apart (>= 100 Myr). Satoh model fitting to the rotation curve of the A component reveals a kinematical mass of 4.4(+-1.2)E11 M_sun, inside the central 12 kpc (H_0=75 km/s/Mpc). The HI emission shows two components, a more massive one that belongs to NGC 6845 A, and a second one associated to NGC 6845 B. We do not detect gas associated to galaxies C and D. The total amount of HI is 1.4E10 M_sun, five time the HI content of the Milky Way. The HI kinematics indicates an amount of dark matter associated to the A component two times higher than the mass inside its central 12 kpc. The group kinematics indicates an M/L ~ 43(+-2) or M/L ~ 66(+-2) (solar units), according to two different prescriptions for the internal absorption correction. In spite of this difference, both values furnish similar group mass (~1E13 M_sun). Although preliminary results on N-Body simulations indicate that either B or C might well create a tidal feature like the bridge of the A component, the collision with B appears to be more favourable.Comment: 24 pages, 11 JPEG figures, uses aastex.cls and natbib.sty (included). To appear in the June/1999 issue of the Astronomical Journa

    Comments on Anomaly Cancellations by Pole Subtractions and Ghost Instabilities with Gravity

    Full text link
    We investigate some aspects of anomaly cancellation realized by the subtraction of an anomaly pole, stressing on some of its properties in superspace. In a local formulation these subtractions can be described in terms of a physical scalar, an axion and related ghosts. They appear to be necessary for the unitarization of the theory in the ultraviolet, but they may generate an infrared instability of the corresponding effective action, signalled by ghost condensation. In particular the subtraction of the superanomaly multiplet by a pole in superspace is of dubious significance, due to the different nature of the chiral and conformal anomalies. In turn, this may set more stringent constraints on the coupling of supersymmetric theories to gravity.Comment: 18 pages. Revised version. To appear in "Classical and Quantum Gravity

    The role of angular momentum in the construction of electromagnetic multipolar fields

    Get PDF
    Multipolar solutions of Maxwell's equations are used in many practical applications and are essential for the understanding of light-matter interactions at the fundamental level. Unlike the set of plane wave solutions of electromagnetic fields, the multipolar solutions do not share a standard derivation or notation. As a result, expressions originating from different derivations can be difficult to compare. Some of the derivations of the multipolar solutions do not explicitly show their relation to the angular momentum operators, thus hiding important properties of these solutions. In this article, the relation between two of the most common derivations of this set of solutions is explicitly shown and their relation to the angular momentum operators is exposed.Comment: 13 pages, 2 figure
    corecore