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Abstract

The delta function gauge of the electromagnetic potential allows semiclassi-

cal formulas to be obtained for the probability of exciting a single electron

out of the ground state in an ultrarelativistic heavy ion reaction. Exact for-

mulas have been obtained in the limits of zero impact parameter and large,

perturbative, impact parameter. The perturbative impact parameter result

can be exploited to obtain a semi-empirical cross section formula of the form

σ = A ln γ+B for single electron ionization. A and B can be evaluated for any

combination of target and projectile, and the resulting simple formula is good

at all ultrarelativistic energies. The analytical form of A and B elucidates

a result previously found in numerical calculations: scaled ionization cross

sections decrease with increasing charge of the nucleus being ionized. The

cross section values obtained from the present formula are in good agreement

with recent CERN SPS data from a Pb beam on various nuclear targets.

PACS: 34.90.+q, 25.75.-q

I. INTRODUCTION

In a recent work [1] ionization cross sections were calculalated for a number of represen-

tative cases of collisions involving ultrarelativistic Pb, Zr, Ca, Ne and H ions. The method
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of calculation (on a computer) involved an exact semiclassical solution of the Dirac equation

in the ultrarelativistic limit [2]. A single electron was taken to be bound to one nucleus with

the other nucleus completely stripped. The probability that the electron would be ionized

in the collision was calculated as a function of impact parameter, and cross sections were

then constructed by the usual integration of the probabilities over the impact parameter.

The results of the probability calculations were used to construct cross sections for various

ion-ion collision combinations in the form

σ = A ln γ + B (1)

where A and B are constants for a given ion-ion pair and γ (= 1/
√

1− v2) is the relativistic

factor one of the ions seen from the rest frame of the other.

In Section II of this paper analytic results are derived for the probability that a single

ground state electron will be excited in an ultrarelativistic heavy ion reaction. Exact semi-

classical formulas are presented for the limits of zero impact parameter and perturbational

impact parameters. In Section III the perturbational impact parameter analytical form is

used as a basis to construct semi-empirical formulas for A and B. These formulas reproduce

the previous numerical results for single particle ionization, and they illuminate the system-

atic behavior of A and B with changing target and projectile ion species. Ionization cross

sections calculated with Eq.(1) are then compared with data.

II. IMPACT PARAMETER DEPENDENT PROBABILITIES

If one works in the appropriate gauge [3], then the Coulomb potential produced by an

ultrarelativistic particle (such as a heavy ion) in uniform motion can be expressed in the

following form [4]

V (ρ, z, t) = −αZ1(1− αz)δ(z − t) ln
(b− ρ)2

b2
. (2)

b is the impact parameter, perpendicular to the z–axis along which the ion travels, ρ, z, and

t are the coordinates of the potential relative to a fixed target (or ion), αz is the Dirac matrix,
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α the fine structure constant, and Z1 and v the charge and velocity of the moving ion. This

is the physically relevant ultrarelativistic potential since it was obtained by ignoring terms

in (b− ρ)/γ2 [4] [3]. Its multipole expansion is

V (ρ, z, t) = αZ1(1− αz)δ(z − t)
{
− ln

ρ2

b2
ρ > b

+
∑
m>0

2 cosmφ

m

×
[(

ρ

b

)m

ρ < b

+
(

b

ρ

)m]}
. ρ > b (3)

For b >> ρ

V (ρ, z, t) = δ(z − t)αZ1(1− αz)2
ρ

b
cos φ. (4)

As will be shown in Section III, when b becomes large enough that expression Eq.(4) is inac-

curate for use in calculating a probability, we match onto a Weizsacker-Williams expression

which is valid for large b. Note that the b2 in the denominator of the logarithm in Eq.(2) is

removable by a gauge transformation, and we retain the option of keeping or removing it as

convenient.

It was shown in Ref. [2] that the δ function allows the Dirac equation to be solved exactly

at the point of interaction, z = t. Exact amplitudes then take the form

aj
f (t = ∞) = δfj+

∫ ∞
−∞

dtei(Ef−Ej)t〈φf |δ(z − t)(1− αz)

×(e−iαZ1 ln (b−ρ)2 − 1)|φj〉 (5)

where j is the initial state and f the final state. This amplitude is in the same form as the

perturbation theory amplitude, but with an effective potential to represent all the higher

order effects exactly,

V (ρ, z, t) = −iδ(z − t)(1− αz)(e
−iαZ1 ln (b−ρ)2 − 1), (6)
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in place of the potential of Eq.(2).

Since an exact solution must be unitary, the ionization probability (the sum of probabil-

ities of excitation from the single bound electron to particular continuum states) is equal to

the deficit of the final bound state electron population

∑
ion

P (b) = 1− ∑
bound

P (b) (7)

The sum of bound state probabilities includes the probability that the electron remains in

the ground state plus the sum of probabilities that it ends up in an excited bound state.

From Eq.(5) one may obtain in simple form the exact survival probability of an initial state

Pj(b) = |〈φj|(1− αz)e
−iαZ1 ln (b−ρ)2 |φj〉|2. (8)

By symmetry the αz term falls out and we are left with

Pj(b) = |〈φj|e−iαZ1 ln (b−ρ)2 |φj〉|2. (9)

The ground state wave function φj is the usual K shell Dirac spinor [5]

φj =




g(r)χµ
κ

if(r)χµ
−κ


 (10)

with upper and lower components wave functions g and f

g(r) = N
√

1 + γ2 rγ2−1 e−αZ2r

f(r) = −N
√

1− γ2 rγ2−1 e−αZ2r (11)

where Z2, is the charge of the nucleus that the electron is bound to, γ2 =
√

1− α2Z2
2 , and

N2 =
(2αZ2)

2γ2+1

2Γ(γ2 + 1)
. (12)

Let us first consider b = 0. We have

Pj(b = 0) = |〈φj|e−2iαZ1 lnρ|φj〉|2 = |〈φj|e−2iαZ1(ln r+ln(sin θ))|φj〉|2. (13)

Putting in the explicit form of the upper and lower components for the K shell lowest bound

state Dirac wave function and carrying out the integration we have
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Pj(b = 0) =
π

4

∣∣∣∣∣
Γ(2γ2 + 1− 2iαZ1)Γ(1− iαZ1)

Γ(2γ2 + 1)Γ(3
2
− iαZ1)

∣∣∣∣∣
2

, (14)

or

Pj(b = 0) =
παZ1 ctnh(παZ1)

(1 + 4α2Z2
1)

∣∣∣∣∣
Γ(2γ2 + 1− 2iαZ1)

Γ(2γ2 + 1)

∣∣∣∣∣
2

. (15)

It is interesting to compare this result with a previous calculation of the probability of

ionization in “close collisions” by Bertulani and Baur [6]. For a one electron atom they find

Pion(b < λc/αZ2) = 1.8 α2Z2
1 , (16)

where λc = h̄/mec is the electron Compton wavelength. If we take the low Z1 limit of our

expression Eq.(15) and then subtract it from one we obtain

Pion(b = 0) = (
π2

3
− 1)α2Z2

1 = 2.29 α2Z2
1 (17)

However our expression Eq.(15) only gives the flux lost from the initial state; some of

that flux goes into excited bound states and is not ionized. From our previous numerical

calculations we find that the actual ionization probabilities obtained either by summing up

final continuum states or else by subtracting all the final bound states from unity were 76%

– 80% respectively of the flux lost from the initial state. Thus if we multiply the constant

in Eq.(17) by such a percentage we are in remarkable agreement with Bertulani and Baur

for the perturbative limit.

Now let us consider the case of b >> ρ. From Eq.(4) and Eq.(9) we have

Pj(b) = |〈φj|e−2iαZ1 cos(φ)(ρ/b)|φj〉|2. (18)

Expanding the exponential up to ρ2/b2 we have

Pj(b) = |〈φj|1−2iαZ1 cos(φ)
ρ

b
−2α2Z2

1 cos2(φ)
ρ2

b2
|φj〉|2 (19)

The term in cos(φ) vanishes by symmetry, and integrating, we obtain

Pj(b) = 1− 2
Z2

1

Z2
2

(1 + 3γ2 + 2γ2
2)

3

λ2
c

b2
(20)
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by ignoring the term in 1/b4.

Both limits, Eq.(15) for b = 0 and Eq.(20) for b >> ρ, are relativistically correct and

thus correct for all Z1 and Z2 since exact Dirac wave functions were used.

III. A SEMI-EMPIRICAL FORMULA FOR SINGLE ELECTRON IONIZATION

It is well known that the cross section for ionization of any pair of projectile and target

species can be expressed as a sum of a constant term and a term going as the log of the

relativistic γ of the beam as seen in the target rest frame [6] [7] [1]

σion = A ln γ + B. (21)

The cross section of this form is constructed from an impact parameter integral

σion = 2π
∫

P (b)ion b db (22)

where P (b) is the probability of ionization at a given impact parameter. If all the flux lost

from the initial state went into the continuum then Eq.(20) would provide the ionization

probability at moderately large b

Pion(b) = 2
Z2

1

Z2
2

(1 + 3γ2 + 2γ2
2)

3

λ2
c

b2
. (23)

We will take this form as a physical basis to build a semi-empirical formula for ionization.

In any case we need to integrate the probability up to a natural energy cutoff. In order to

do this we match the delta function solution Eq.(23) at some moderately large b onto the

known Weizsacker-Williams probability for larger b by noting that if bω << γ then

K2
1 (

ωb

γ
) =

γ2

ω2b2
, (24)

and we can rewrite Eq.(24) in the Weizsacker-Williams form for large b

Pion(b) = 2
Z2

1

Z2
2

(1 + 3γ2 + 2γ2
2)

3

λ2
cω

2

γ2
K2

1 (
ωb

γ
). (25)

To perform the large b cutoff recall that to high degree of accuracy
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ω2

γ2

∫ ∞
b0

K2
1(

ωb

γ
)b db = ln(

0.681γ

ωb0

) = ln γ + ln(
0.681

ωb0

). (26)

We immediately obtain the following expression for A

A =
4πλ2

c

3

Z2
1

Z2
2

(1 + 3γ2 + 2γ2
2), (27)

where λ2
c , the square of the electron Compton wave length, is 1491 barns. However, as it turns

out, uniformly for all species of heavy ion reactions, at perturbational impact parameters a

little over 70% of the flux lost from the initial state goes into excited bound states and does

not contribute to ionization. But since the ratio of flux going into continuum states to the

total flux lost is so uniform we can use a fit to previously published numerical results [1] to

obtain a semi-analytical form for A:

A = (0.2869)
4πλ2

c

3

Z2
1

Z2
2

(1 + 3γ2 + 2γ2
2), (28)

or in barns

A = 1792
Z2

1

Z2
2

(1 + 3γ2 + 2γ2
2). (29)

Now one can use the second term in Eq.(26) to obtain a provisional expression for B

B = A ln(
0.681

ωb0

). (30)

Obviously we need to evaluate ω and to discuss b0. ω can be taken as the minimum ionization

energy, 1 − γ2, times a constant a little larger than one. One next observes that if Pion(b)

varies as 1/b2 the impact parameter integral has to be cut off on the low side at some value b0

to avoid divergence. In fact the 1/b2 dependence continues down to the surface of the atom

where other terms evident in Eq.(3) begin to contribute. The atomic size is just the electron

Compton wave length divided by αZ2. In this region Pion(b) first rises faster than 1/b2 and

then levels off to approach a constant change with b at b = 0 [1]. One could try to add a

low impact paramenter contribution to A based on Eq.(15) to our provisional form Eq.(30),

but that turns out to unduly complicate things without improving the phenomenology. Our

approach will be to set b0 to an empirical constant divided by αZ2
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Eq.(30) now takes the form

B = A ln(
CαZ2

1− γ2
). (31)

Putting in two analytical fine tuning factors and fitting the remaining constant to the nu-

merical results of Ref. [1] we obtain a semi-analytical form for B:

B = Aγ
1/10
1 (1− α2Z1Z2)

1/4 ln(
2.37αZ2

1− γ2
). (32)

Table I expands a corresponding table from Ref. [1] by adding cross sections of symmetric

ion-ion pairs calculated with the formulas for A and B. There is good agreement between the

formula values for the cross sections (first rows) and the numerical cross sections calculated

by subtracting the bound state probabilities from unity (second rows) or calculated by

summing continuum electron final states (third rows). For both A and B the agreement is

also good with the Anholt and Becker calculations [7] in the literature for the lighter ion

species. However with increasing mass of the ions the perturbative energy dependent term

A decreases in the formula calculations and in our previous numerical calculations, whereas

it increases in the Anholt and Becker calculations. The greatest discrepancy is for Pb + Pb,

with Anholt and Becker being about 60% higher. The reason that the A should decrease

with increasing mass (actually Z) of the ions is explained by the

(1 + 3γ2 + 2γ2
2) = 3− 2α2Z2

2 + 3
√

1− α2Z2
2 (33)

factor in the formula for A (and thereby B also). As we noted before, perhaps the discrepancy

between our A decreasing with Z and the Anholt and Becker A increasing with Z is due

to the fact that Anholt and Becker use approximate relativistic bound state wave functions

and the present calculations utilize exact Dirac wave functions for the bound states. For

the term B (which has the non-perturbative component) the agreement is relatively good

between all the calculations.

In the perturbative limit (small Z1, Z2) the cross section formula goes over to

σ = (0.2869)8πλ2
c

Z2
1

Z2
2

ln
2.37γ

αZ2

= 7.21λ2
c

Z2
1

Z2
2

ln
2.37γ

αZ2

. (34)
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By way of comparison, Bertulani and Baur [6] using the equivalent photon method and

taking the contribution of b ≥ λc/αZ2 found

σ = 4.9λ2
c

Z2
1

Z2
2

ln
2γ

αZ2
(35)

for this case of ionization of a single electron.

Table II shows results of the calculation of B (multiplied by Z2
2/Z

2
1) for a number of

representative non-symmetric ion-ion pairs. (Since A is perturbative, scaling as Z2
1 , its

value can be taken from Table I for the various pairs here.) Once again there is good

agreement between the formula values for the cross sections (first rows) and the numerical

cross sections calculated by subtracting the bound state probabilities from unity (second

rows) or calculated by summing continuum electron final states (third rows). The only

notable disagreement is with Anholt and Becker for Pb targets.

The availabilty of the present semi-empirical formula facilitates a comparison with avail-

able CERN SPS data. Calculations with the formula are in considerably better agreement

with the data of Krause et al. [8] for a Pb beam on various targets than are the Anholt and

Becker numbers with or without screening. Note that in this case the role of target and

beam are reversed. It is the single electron Pb ion in the beam that is ionized by the various

nuclei in the fixed targets. The formula numbers do not include screening, which should in

principle be included for a fixed target case. However, one might infer from the Anholt and

Becker calculations that the effect of screening is smaller than the error induced by using

an approximate rather than proper relativistic wave function for the electron bound in Pb.

Note that the formula has not been fit to experimental data. It is compared with ex-

perimental data. The “empirical” aspect of this formula refers to adjusting the formula to

previous numerical calculations of Ref. [1]

At RHIC the relativistic γ of one ion seen in the rest frame of the other is 23,000, and

of course there is no screening, so the present formula should be completely applicable. The

present formula predicts a single electron ionization cross section of 101 kilobarns for Au +

Au at RHIC. The corresponding cross section from Anholt and Becker is 150 kilobarns.
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TABLES

TABLE I. Calculated Ionization Cross Sections Expressed in the Form A ln γ + B (in barns)

Pb + Pb Zr + Zr Ca + Ca Ne + Ne H + H

A Formula 8400 10,212 10,618 10,718 10,752

1−∑
bnd e− 8680 10,240 10,620 10,730 10,770

∑
cont e− 8450 9970 10,340 10,440 10,480

Anholt & Becker [7] 13,800 11,600 10,800 10,600 10,540

B Formula 14,133 27,375 36,623 44,638 69,629

1−∑
bnd e− 14,190 28,450 38,010 46,080 71,090

∑
cont e− 12,920 27,110 36,530 44,430 68,780

Anholt & Becker 13,000 27,800 37,400 45,400 70,000

12



TABLE II. Calculated values of the scaled quantity (Z2
2/Z2

1 )B for non-symmetric combinations

of colliding particles. The second nucleus (Z2) is taken to be the one with the single electron to

be ionized. Since Anholt and Becker cross sections without screening are completely perturba-

tive, their values of of B also can be taken from Table IV, and are repeated here for convenient

comparison.

H + Ne H + Ca Ca + H H + Zr H + Pb Pb + H

Formula 44,716 36,890 69,462 28,226 16,487 66,539

1−∑
bnd e− 46,150 38,270 70,820 29,440 17,090 67,550

∑
cont e− 44,490 36,790 68,520 28,070 15,680 65,330

Anholt & Becker [7] 45,400 37,400 70,000 27,800 13,000 70,000

Pb +Ne Ne + Pb Pb + Ca Ca + Pb Pb + Zr Zr + Pb

Formula 42,308 16,313 34,503 16,097 25,751 15,592

1−∑
bnd e− 42,560 17,030 34,720 16,870 26,010 16,250

∑
cont e− 41,000 15,690 33,330 15,530 24,730 14,930

Anholt & Becker 45,400 13,000 37,400 13,000 27,800 13,000
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TABLE III. Cross sections for the ionization of a 160 GeV/A one electron Pb projectile (Z2)

by various fixed nuclear targets (Z1). Unlike in Table II, here the appropriate (Z2
1/Z2

2 ) factor has

been included. Cross sections are given in kilobarns to match the format of the CERN SPS data.

Target Z1 Formula SPS Data Anholt & Becker Anholt & Becker

(with screening) (no screening)

Be 4 0.14 0.14 0.24 0.20

C 6 0.32 0.31 0.49 0.45

Al 13 1.5 1.3 2.0 2.1

Cu 29 7.4 6.9 9.0 10.5

Sn 50 22 15 25 31

Au 79 53 42 60 78
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