27,890 research outputs found

    Hypervelocity impact facility for simulating materials exposure to impact by space debris

    Get PDF
    As a result of man's venturing into space, the local debris contributed by his presence exceeds, at some orbital altitudes, that of the natural component. Man's contribution ranges from fuel residue to large derelect satellites that weigh many kilograms. Current debris models are able to predict the growth of the problem and suggest that spacecraft must employ armor or bumper shields for some orbital altitudes now, and that, the problem will become worse as a function of time. The practical upper limit to the velocity distribution is on the order of 40 km/s and is associated with the natural environment. The maximum velocity of the man-made component is in the 14-16 km/s range. The Long Duration Exposure Facility (LDEF) has verified that the 'high probability of impact' particles are in the microgram to milligram range. These particles can have significant effects on coatings, insulators, and thin metallic layers. The surface of thick materials becomes pitted and the local debris component is enhanced by ejecta from the debris spectrum in a controlled environment. The facility capability is discussed in terms of drive geometry, energetics, velocity distribution, diagnostics, and projectile/debris loading. The facility is currently being used to study impact phenomena on Space Station Freedom's solar array structure, other solar array materials, potential structural materials for use in the station, electrical breakdown in the space environment, and as a means of clarifying or duplicating the impact phenomena on the LDEF surfaces. The results of these experiments are described in terms of the mass/velocity distribution incident on selected samples, crater dynamics, and sample geometry

    Adiabatic Magnetization of Superconductors as a High-Performance Cooling Mechanism

    Get PDF
    The adiabatic magnetization of a superconductor is a cooling principle proposed in the 30s, which has never been exploited up to now. Here we present a detailed dynamic description of the effect, computing the achievable final temperatures as well as the process timescales for different superconductors in various regimes. We show that, although in the experimental conditions explored so far the method is in fact inefficient, a suitable choice of initial temperatures and metals can lead to unexpectedly large cooling effect, even in the presence of dissipative phenomena. Our results suggest that this principle can be re-envisaged today as a performing refrigeration method to access the microK regime in nanodevices.Comment: 4 pages, 3 color figure

    Teleological Essentialism

    Get PDF
    Placeholder essentialism is the view that there is a causal essence that holds category members together, though we may not know what the essence is. Sometimes the placeholder can be filled in by scientific essences, such as when we acquire scientific knowledge that the atomic weight of gold is 79. We challenge the view that placeholders are elaborated by scientific essences. On our view, if placeholders are elaborated, they are elaborated Aristotelian essences, a telos. Utilizing the same kinds of experiments used by traditional essentialists—involving superficial change (study 1), transformation of insides (study 2), acquired traits (study 3) and inferences about offspring (study 4)—we find support for the view that essences are elaborated by a telos. And we find evidence (study 5) that teleological essences may generate category judgments

    Consequences of wall stiffness for a beta-soft potential

    Full text link
    Modifications of the infinite square well E(5) and X(5) descriptions of transitional nuclear structure are considered. The eigenproblem for a potential with linear sloped walls is solved. The consequences of the introduction of sloped walls and of a quadratic transition operator are investigated.Comment: RevTeX 4, 8 pages, as published in Phys. Rev.

    Time evolution of the Partridge-Barton Model

    Full text link
    The time evolution of the Partridge-Barton model in the presence of the pleiotropic constraint and deleterious somatic mutations is exactly solved for arbitrary fecundity in the context of a matricial formalism. Analytical expressions for the time dependence of the mean survival probabilities are derived. Using the fact that the asymptotic behavior for large time tt is controlled by the largest matrix eigenvalue, we obtain the steady state values for the mean survival probabilities and the Malthusian growth exponent. The mean age of the population exhibits a t−1t^{-1} power law decayment. Some Monte Carlo simulations were also performed and they corroborated our theoretical results.Comment: 10 pages, Latex, 1 postscript figure, published in Phys. Rev. E 61, 5664 (2000

    Parametrization of the angular correlation and degree of linear polarization in two-photon decays of hydrogen-like ions

    Full text link
    The two-photon decay in hydrogen-like ions is investigated within the framework of second order perturbation theory and Dirac's relativistic equation. Special attention is paid to the angular correlation of the emitted photons as well as to the degree of linear polarization of one of the two photons, if the second is just observed under given angles. Expressions for the angular correlation and the degree of linear polarization are expanded in terms of cos⁥Ξ\cos\theta-polynomials, whose coefficients depend on the atomic number and the energy sharing of the emitted photons. The effects of including higher (electric and magnetic) multipoles upon the emitted photon pairs beyond the electric-dipole approximation are also discussed. Calculations of the coefficients are performed for the transitions 2s1/2→1s1/22s_{1/2}\rightarrow1s_{1/2}, 3d3/2→1s1/23d_{3/2}\rightarrow1s_{1/2} and 3d5/2→1s1/23d_{5/2}\rightarrow1s_{1/2}, along the entire hydrogen isoelectronic sequence (1≀Z≀1001\le Z \le 100)

    ‘The show must go on!’ Fieldwork, mental health and wellbeing in Geography, Earth and Environmental Sciences

    Get PDF
    Fieldwork is central to the identity, culture and history of academic Geography, Earth and Environmental Sciences (GEES). However, in this paper we recognise that, for many academic staff, fieldtrips can be a profoundly challenging “ordeal,” ill‐conducive to wellness or effective pedagogic practice. Drawing on research with 39 UK university‐based GEES academics who self‐identify as having a mental health condition, we explore how mental health intersects with spaces and expectations of fieldwork in Higher Education. We particularly focus on their accounts of undertaking undergraduate residential fieldtrips and give voice to these largely undisclosed experiences. Their narratives run counter to normative, romanticised celebrations of fieldwork within GEES disciplines. We particularly highlight recurrent experiences of avoiding fieldwork, fieldwork‐as‐ ordeal, and “coping” with fieldwork, and suggest that commonplace anxieties within the neoliberal academy – about performance, productivity, fitness‐to‐work, self‐presentation, scrutiny and fear‐of‐falling‐behind – are felt particularly intensely during fieldwork. In spite of considerable work to make fieldwork more accessible to students, we find that field‐based teaching is experienced as a focal site of distress, anxiety and ordeal for many GEES academics with common mental health conditions. We conclude with prompts for reflection about how fieldwork could be otherwise
    • 

    corecore