130 research outputs found

    Household level spatio-temporal analysis of Plasmodium falciparum and Plasmodium vivax malaria in Ethiopia

    Get PDF
    Background: The global decline of malaria burden and goals for elimination has led to an increased interest in the fine-scale epidemiology of malaria. Micro-geographic heterogeneity of malaria infection could have implications for designing targeted small-area interventions. Methods: Two-year longitudinal cohort study data were used to explore the spatial and spatio-temporal distribution of malaria episodes in 2040 children aged < 10 years in 16 villages near the Gilgel-Gibe hydropower dam in Southwest Ethiopia. All selected households (HHs) were geo-referenced, and children were followed up through weekly house-to-house visits for two consecutive years to identify febrile episodes of P. falciparum and P. vivax infections. After confirming the spatial dependence of malaria episodes with Ripley's K function, SatScan(TM) was used to identify purely spatial and space-time clusters (hotspots) of annual malaria incidence for 2 years follow-up: year 1 (July 2008-June 2009) and year 2 (July 2009-June 2010). Results: In total, 685 P. falciparum episodes (in 492 HHs) and 385 P. vivax episodes (in 290 HHs) were identified, representing respectively incidence rates of 14.6 (95% CI: 13.4-15.6) and 8.2 (95% CI: 7.3-9.1) per 1000 child-months at risk. In year 1, the most likely (128 HHs with 63 episodes, RR = 2.1) and secondary (15 HHs with 12 episodes, RR = 5.31) clusters of P. vivax incidence were found respectively in southern and north-western villages; while in year 2, the most likely cluster was located only in north-western villages (85 HHs with 16 episodes, RR = 4.4). Instead, most likely spatial clusters of P. falciparum incidence were consistently located in villages south of the dam in both years: year 1 (167 HHs with 81 episodes, RR = 1.8) and year 2 (133 HHs with 67 episodes, RR = 2.2). Space-time clusters in southern villages for P. vivax were found in August-November 2008 in year 1 and between November 2009 and February 2010 in year 2; while for P. falciparum, they were found in September-November 2008 in year 1 and October-November 2009 in year 2. Conclusion: Hotspots of P. falciparum incidence in children were more stable at the geographical level and over time compared to those of P. vivax incidence during the study period

    The thermoelastic Hertzian contact problem

    Get PDF
    AbstractA numerical solution is obtained for the steady-state thermoelastic contact problem in which heat is conducted between two elastic bodies of dissimilar materials at different temperatures with arbitrary quadratic profiles. Thermoelastic deformation causes the initially elliptical contact area to be reduced in size and to become more nearly circular as the temperature difference is increased. There is also a small but identifiable deviation from exact ellipticity at intermediate temperature differences. An approximate analytical solution is obtained, based on approximating the contact area by an ellipse

    Risk factors for mortality among adult HIV/AIDS patients following antiretroviral therapy in Southwestern Ethiopia : an assessment through survival models

    Get PDF
    Introduction: Efforts have been made to reduce HIV/AIDS-related mortality by delivering antiretroviral therapy (ART) treatment. However, HIV patients in resource-poor settings are still dying, even if they are on ART treatment. This study aimed to explore the factors associated with HIV/AIDS-related mortality in Southwestern Ethiopia. Method: A non-concurrent retrospective cohort study which collected data from the clinical records of adult HIV/AIDS patients, who initiated ART treatment and were followed between January 2006 and December 2010, was conducted, to explore the factors associated with HIV/AIDS-related mortality at Jimma University Specialized Hospital (JUSH). Survival times (i. e., the time from the onset of ART treatment to the death or censoring) and different characteristics of patients were retrospectively examined. A best-fit model was chosen for the survival data, after the comparison between native semi-parametric Cox regression and parametric survival models (i. e., exponential, Weibull, and log-logistic). Result: A total of 456 HIV patients were included in the study, mostly females (312, 68.4%), with a median age of 30 years (inter-quartile range (IQR): 23-37 years). Estimated follow-up until December 2010 accounted for 1245 person-years at risk (PYAR) and resulted in 66 (14.5%) deaths and 390 censored individuals, representing a median survival time of 34.0 months (IQR: 22.8-42.0 months). The overall mortality rate was 5.3/100 PYAR: 6.5/100 PYAR for males and 4.8/100 PYAR for females. The Weibull survival model was the best model for fitting the data (lowest AIC). The main factors associated with mortality were: baseline age (> 35 years old, AHR = 3.8, 95% CI: 1.6-9.1), baseline weight (AHR = 0.93, 95% CI: 0.90-0.97), baseline WHO stage IV (AHR = 6.2, 95% CI: 2.2-14.2), and low adherence to ART treatment AHR = 4.2, 95% CI: 2.5-7.1). Conclusion: An effective reduction in HIV/AIDS mortality could be achieved through timely ART treatment onset and maintaining high levels of treatment adherence

    Spatio-temporal analysis of malaria incidence in the Peruvian Amazon Region between 2002 and 2013.

    Get PDF
    Malaria remains a major public health problem in the Peruvian Amazon where the persistence of high-risk transmission areas (hotspots) challenges the current malaria control strategies. This study aimed at identifying significant space-time clusters of malaria incidence in Loreto region 2002-2013 and to determine significant changes across years in relation to the control measures applied. Poisson regression and purely temporal, spatial, and space-time analyses were conducted. Three significantly different periods in terms of annual incidence rates (AIR) were identified, overlapping respectively with the pre-, during, and post- implementation control activities supported by PAMAFRO project. The most likely space-time clusters of malaria incidence for P. vivax and P. falciparum corresponded to the pre- and first two years of the PAMAFRO project and were situated in the northern districts of Loreto, while secondary clusters were identified in eastern and southern districts with the latest onset and the shortest duration of PAMAFRO interventions. Malaria in Loreto was highly heterogeneous at geographical level and over time. Importantly, the excellent achievements obtained during 5 years of intensified control efforts totally vanished in only 2 to 3 years after the end of the program, calling for sustained political and financial commitment for the success of malaria elimination as ultimate goal

    Количественные характеристики основных показателей надежности электрических сетей ООО"МРЭС" РЭС-1

    Get PDF
    АННОТАЦИЯ БАКАЛАВРСКОЙ РАБОТЫ Количественные характеристики основных показателей надежности электрических сетей ООО «МРЭС» РЭС-1 Автор проекта Логинова Евгения Владимировна, ЗХЭн-12-01 (З-12) Руководитель проекта Дулесова Наталья Валериевна Год защиты работы: 2017 Выпускная квалификационная работа по теме «Количественные характеристики основных показателей надежности электрических сетей ООО «МРЭС» РЭС-1» содержит 66 страниц текстового документа, 20 рисунков, 47 таблиц, 26 использованных источников, 4 листа графического материала. НАДЕЖНОСТЬ, ЭЛЕКТРОСНАБЖЕНИЕ, ЭЛЕКТРИЧЕСКАЯ ЦЕПЬ, ИСТОЧНИК, ПОТРЕБИТЕЛЬ ОТКАЗ, ПОКАЗАТЕЛИ НАДЕЖНОСТИ. Объект исследований – районные распределительные электрические сети, питающие потребителей РЭС-1. Предмет исследований – способы анализа и определения количественных показателей надежности электрических сетей. Методы исследования – статистические методы оценки надежности по данным эксплуатации районных распределительных сетей. 000000000000 Научная новизна – использование статистических методов оценки основных показателей надежности с применением исходной информации по материалам эксплуатации электрических сетей. Цель работы заключается в анализе основных показателей надежности электрических сетей и последующем определении их количественных характеристик для выработки рекомендаций по обеспечению требуемого уровня надежности. Значимость работы – обусловлена тем, что полученные результаты нашли отражение в методических разработках ООО «МРЭС» и в настоящее время включены в инструктивные материалы. Область применения – работа может быть предложена электросетевым организациям как методика оценки и разработки мероприятий по обеспечению надежности. Задачи выпускной квалификационной работы: выделить методические аспекты исследования надежности электрической сети; выполнить анализ состояния надежности электрической сети; определить параметры основных показателей надежности электрической сети; предложить мероприятия по повышению надежности электрических сетей РЭС-1. В течение проработки проекта были получены следующие результаты: представлены теоретические обоснования обеспечения высокого уровня надежности электрических сетей в процессе их эксплуатации; сформированы исходные данные с привязкой к структурным схемам для расчета показателей надежности электроснабжения потребителей; выполнены расчеты основных показателей надежности сети; выполнен анализ реальных и среднестатистических количественных характеристик показателей надежности; предложены мероприятия по повышению и обеспечению надежности районных сетей

    Integrating Parasitological and Entomological Observations to Understand Malaria Transmission in Riverine Villages in the Peruvian Amazon.

    Get PDF
    BACKGROUND: Remote rural riverine villages account for most of the reported malaria cases in the Peruvian Amazon. As transmission decreases due to intensive standard control efforts, malaria strategies in these villages will need to be more focused and adapted to local epidemiology. METHODS: By integrating parasitological, entomological, and environmental observations between January 2016 and June 2017, we provided an in-depth characterization of malaria transmission dynamics in 4 riverine villages of the Mazan district, Loreto department. RESULTS: Despite variation across villages, malaria prevalence by polymerase chain reaction in March 2016 was high (>25% in 3 villages), caused by Plasmodium vivax mainly and composed of mostly submicroscopic infections. Housing without complete walls was the main malaria risk factor, while households close to forest edges were more commonly identified as spatial clusters of malaria prevalence. Villages in the basin of the Mazan River had a higher density of adult Anopheles darlingi mosquitoes, and retained higher prevalence and incidence rates compared to villages in the basin of the Napo River despite test-and-treat interventions. CONCLUSIONS: High heterogeneity in malaria transmission was found across and within riverine villages, resulting from interactions between the microgeographic landscape driving diverse conditions for vector development, housing structure, and human behavior

    Epidemiology of Plasmodium vivax Malaria in Peru.

    Get PDF
    Malaria in Peru, dominated by Plasmodium vivax, remains a public health problem. The 1990s saw newly epidemic malaria emerge, primarily in the Loreto Department in the Amazon region, including areas near to Iquitos, the capital city, but sporadic malaria transmission also occurred in the 1990s-2000s in both north-coastal Peru and the gold mining regions of southeastern Peru. Although a Global Fund-supported intervention (PAMAFRO, 2005-2010) was temporally associated with a decrease of malaria transmission, from 2012 to the present, both P. vivax and Plasmodium falciparum malaria cases have rapidly increased. The Peruvian Ministry of Health continues to provide artemesinin-based combination therapy for microscopy-confirmed cases of P. falciparum and chloroquine-primaquine for P. vivax Malaria transmission continues in remote areas nonetheless, where the mobility of humans and parasites facilitates continued reintroduction outside of ongoing surveillance activities, which is critical to address for future malaria control and elimination efforts. Ongoing P. vivax research gaps in Peru include the following: identification of asymptomatic parasitemics, quantification of the contribution of patent and subpatent parasitemics to mosquito transmission, diagnosis of nonparasitemic hypnozoite carriers, and implementation of surveillance for potential emergence of chloroquine- and 8-aminoquinoline-resistant P. vivax Clinical trials of tafenoquine in Peru have been promising, and glucose-6-phosphate dehydrogenase deficiency in the region has not been observed to be a limitation to its use. Larger-scale challenges for P. vivax (and malaria in general) in Peru include logistical difficulties in accessing remote riverine populations, consequences of government policy and poverty trends, and obtaining international funding for malaria control and elimination

    Evaluation du risque malarique avec utilisation de l'imagerie satellite et des arbres de regression "boostés" dans la région de l'Amazone au Pérou

    Full text link
    This is the first study to assess the risk of co-endemic Plasmodium vivax and Plasmodium falciparum transmission in the Peruvian Amazon using boosted regression tree (BRT) models based on social and environmental predictors derived from satellite imagery and data. Yearly cross-validated BRT models were created to discriminate high-risk (annual parasite index API > 10 cases/1000 people) and veryhigh-risk for malaria (API > 50 cases/1000 people) in 2766 georeferenced villages of Loreto department, between 2010–2017 as other parts in the article (graphs, tables, and texts). Predictors were cumulative annual rainfall, forest coverage, annual forest loss, annual mean land surface temperature, normalized difference vegetation index (NDVI), normalized difference water index (NDWI), shortest distance to rivers, time to populated villages, and population density. BRT models built with predictor data of a given year efficiently discriminated the malaria risk for that year in villages (area under the ROC curve (AUC) > 0.80), and most models also effectively predicted malaria risk in the following year. Cumulative rainfall, population density and time to populated villages were consistently the top three predictors for both P. vivax and P. falciparum incidence. Maps created using the BRT models characterize the spatial distribution of the malaria incidence in Loreto and should contribute to malaria-related decision making in the area.PR

    Temporal and Microspatial Heterogeneity in Transmission Dynamics of Coendemic Plasmodium vivax and Plasmodium falciparum in Two Rural Cohort Populations in the Peruvian Amazon.

    Get PDF
    BACKGROUND: Malaria is highly heterogeneous: its changing malaria microepidemiology needs to be addressed to support malaria elimination efforts at the regional level. METHODS: A 3-year, population-based cohort study in 2 settings in the Peruvian Amazon (Lupuna, Cahuide) followed participants by passive and active case detection from January 2013 to December 2015. Incidence and prevalence rates were estimated using microscopy and polymerase chain reaction (PCR). RESULTS: Lupuna registered 1828 infections (1708 Plasmodium vivax, 120 Plasmodium falciparum; incidence was 80.7 infections/100 person-years (95% confidence interval [CI] , 77.1-84.5). Cahuide detected 1046 infections (1024 P vivax, 20 P falciparum, 2 mixed); incidence was 40.2 infections/100 person-years (95% CI, 37.9-42.7). Recurrent P vivax infections predominated onwards from 2013. According to PCR data, submicroscopic predominated over microscopic infections, especially in periods of low transmission. The integration of parasitological, entomological, and environmental observations evidenced an intense and seasonal transmission resilient to standard control measures in Lupuna and a persistent residual transmission after severe outbreaks were intensively handled in Cahuide. CONCLUSIONS: In 2 exemplars of complex local malaria transmission, standard control strategies failed to eliminate submicroscopic and hypnozoite reservoirs, enabling persistent transmission

    Assessing malaria transmission in a low endemicity area of north-western Peru

    Get PDF
    Background\ud Where malaria endemicity is low, control programmes need increasingly sensitive tools for monitoring malaria transmission intensity (MTI) and to better define health priorities. A cross-sectional survey was conducted in a low endemicity area of the Peruvian north-western coast to assess the MTI using both molecular and serological tools.\ud \ud Methods\ud Epidemiological, parasitological and serological data were collected from 2,667 individuals in three settlements of Bellavista district, in May 2010. Parasite infection was detected using microscopy and polymerase chain reaction (PCR). Antibodies to Plasmodium vivax merozoite surface protein-119 (PvMSP119) and to Plasmodium falciparum glutamate-rich protein (PfGLURP) were detected by ELISA. Risk factors for exposure to malaria (seropositivity) were assessed by multivariate survey logistic regression models. Age-specific antibody prevalence of both P. falciparum and P. vivax were analysed using a previously published catalytic conversion model based on maximum likelihood for generating seroconversion rates (SCR).\ud \ud Results\ud The overall parasite prevalence by microscopy and PCR were extremely low: 0.3 and 0.9%, respectively for P. vivax, and 0 and 0.04%, respectively for P. falciparum, while seroprevalence was much higher, 13.6% for P. vivax and 9.8% for P. falciparum. Settlement, age and occupation as moto-taxi driver during previous year were significantly associated with P. falciparum exposure, while age and distance to the water drain were associated with P. vivax exposure. Likelihood ratio tests supported age seroprevalence curves with two SCR for both P. vivax and P. falciparum indicating significant changes in the MTI over time. The SCR for PfGLURP was 19-fold lower after 2002 as compared to before (λ1 = 0.022 versus λ2 = 0.431), and the SCR for PvMSP119 was four-fold higher after 2006 as compared to before (λ1 = 0.024 versus λ2 = 0.006).\ud \ud Conclusion\ud Combining molecular and serological tools considerably enhanced the capacity of detecting current and past exposure to malaria infections and related risks factors in this very low endemicity area. This allowed for an improved characterization of the current human reservoir of infections, largely hidden and heterogeneous, as well as providing insights into recent changes in species specific MTIs. This approach will be of key importance for evaluating and monitoring future malaria elimination strategies.We would like to thank Socrates Herrera and the Centro Latino Americano de Investigación en Malaria (CLAIM) for their contribution to the fieldwork, and all study participants and the local authorities for their enthusiastic support provided to our study
    corecore