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A numerical solution is obtained for the steady-state thermoelastic contact problem in which heat is
conducted between two elastic bodies of dissimilar materials at different temperatures with arbitrary
quadratic profiles. Thermoelastic deformation causes the initially elliptical contact area to be reduced
in size and to become more nearly circular as the temperature difference is increased. There is also a
small but identifiable deviation from exact ellipticity at intermediate temperature differences. An
approximate analytical solution is obtained, based on approximating the contact area by an ellipse.
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1. Introduction

When two conforming bodies are placed in contact, the contact
pressure distribution is sensitive to comparatively small changes in
surface profile. Thermoelastic deformations, though generally
small, can therefore have a significant effect on systems involving
contact. For example, Clausing (1966) showed experimentally that
the thermal contact resistance between two contacting bodies var-
ied with the transmitted heat flux as a result of thermoelastically
driven changes in the extent of the contact area.

If the contacting bodies are small, their surfaces can be approx-
imated by quadratic functions in the vicinity of the contact area
and in the absence of thermoelastic deformation, the solution of
the elastic contact problem is given by the classical Hertz theory
(Johnson, 1985). In particular, the contact area is an ellipse whose
ellipticity and orientation are unique functions of the coefficients
defining the quadratic surfaces and whose linear dimensions vary
with P'/?, where P is the contact force.

If the extremities of the two bodies are now raised to different
temperatures Ty, T,, heat will flow through the contact area and
the resulting thermoelastic deformation will influence the contact
area and the contact pressure distribution. This problem was
solved by Barber (1973) for the special case where the bodies are
axisymmetric. In this case, the contact area is always circular and
its radius a for a given contact force decreases with increasing tem-
perature difference, being given by
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ay is the radius of the isothermal (Hertzian) elastic contact area for
the same contact force P,R;,R, are the radii of the two contacting
bodies and the distortivity ¢ is defined as
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where o, v,K are the coefficient of thermal expansion, Poisson’s
ratio and thermal conductivity. This solution is strictly only applica-
ble when the heat flows into the body with the higher distortivity
and hence the dimensionless parameter @ > 0, since for the oppo-
site direction of heat flow, a small annulus of imperfect thermal
contact is developed at the edge of the contact area (Barber,
1978; Kulchytsky-Zhyhailo et al., 2001).

In this paper, we use a numerical method to determine the
effect of thermoelastic deformation for the more general Hertzian
case where the bodies have general quadratic shapes and the iso-
thermal contact area is elliptical. We shall show that the contact
area becomes smaller and also more nearly circular as the temper-
ature difference is increased. We shall also develop an approximate
analytical solution to the problem, using an approach proposed by
Yevtushenko and Kulchytsky-Zhyhailo (1996).
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2. Statement of the problem

We consider the problem in which two thermally conducting
elastic bodies are pressed together by a force P, whilst their
extremities are maintained at temperatures T; and T, respectively.
Frictionless contact conditions are assumed and heat flow between
the elastic bodies is only permitted to take place by conduction
through the contact area A. As in the axisymmetric case, we restrict
attention to the case where the heat flows into the more distortive
material and hence (T; — T,)(5; — J2) < O.

2.1. The heat conduction problem

The temperature at the point defined by coordinates (x,y) on
the surface of body i can be written as

where q is the heat flux directed into the body and

r=y\x-*+y-n’ (5)

In the absence of surface tractions, this heat flux would also cause
thermoelastic displacement w; in the inward normal direction given
by (Barber, 1971)

wiey) =2 [ [ atemineydza, ©

where we have omitted a rigid-body displacement.
Continuity of heat flux and temperature at the contact area then
leads to the integral equation
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where K is defined in Eq. (2). This equation serves to determine the
heat flux g, which is here taken as positive in the direction from
body 1 to body 2. Once q is determined, the differential thermoelas-
tic expansion can then be determined from Eq. (6) as

witey) +wa(ey) = 22 [ [ e indzan. ®)

2.2. The contact problem

We suppose that the two contacting bodies have profiles de-
fined by the functions g, (x,y),&,(x,¥), as shown in Fig. 1, so that
the initial gap between the undeformed bodies is

8o(x.y) = &i1(%y) + &(%.y). 9)

As in the Hertzian theory, we assume that the contact area is suffi-
ciently small to permit this expression to be represented by the
quadratic function

2 2
£x.Y) =30+ 50 (10)
where R;, Ry are the principal radii of curvature of the combined
profile, as defined by Eq. (4.3) of Johnson (1985).

If the bodies are now pressed together, a contact pressure p(x,y)
will be developed in the contact area, which will generate elastic
normal surface displacements

1-v? [ [p(&nded
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directed into the respective bodies i = 1,2, where E; is Young’s mod-
ulus of the contacting body i.
The final gap between the bodies is given by

g(x7y) :gO(va) +U1(X,y) +U2(X,y) +W1(X7y) +W2(X1y) +d1

(12)

where d is an unknown rigid body displacement. The contact prob-
lem can then be stated by noting that the gap is zero by definition in
the contact area and positive outside, leading to the unilateral con-
tact problem

g(X7Y):07 p(Xy) >07 (X,y) €A7 (13)
p(x.y)=0, gxy) >0, (xy)¢A (14)

Combining Egs. (8), (10)-(14), we then have
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The corresponding total force is then given by
P [ [ pemdzan (17)

The integral equations (7) and (15) serve to determine the heat flux
q and the contact pressure p, whilst Eq. (17) and the inequality in
Eq. (15) determine the extent of the contact area A.

2.3. Dimensionless formulation
The number of independent parameters can be reduced by

using an appropriate dimensionless representation. We first define
two length scales R, ay through the relations

2 1 1 3/3PR
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Fig. 1. Initial gap between two bodies.
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and then define dimensionless coordinates % =x/ay, y =y/ay.
Notice that ay is the isothermal Hertzian contact radius for the axi-
symmetric case R; = Ry = R. The governing equations can then be

written as
1 pé ipdédny 1 G5 i) In(f
5[ [PEmER ] [ ipngdedi
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Notice that with this formulation, the problem is completely
defined by the dimensionless parameters @, R*, since d must be cho-
sen so as to satisfy the equilibrium condition (21).

We also note that in the isothermal case ©® = 0, Eq. (19) reduces
to the classical Hertzian equation with solution (Johnson, 1985)

PN 2 X232
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and the contact area A is an ellipse of semi-axes a, b determined by

the two simultaneous equations
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where

;,:g, e=V1-,> (26)

and K(e) and E(e) are the complete elliptic integrals of the first and
second kind, respectively.

3. Numerical implementation

For the numerical solution, we use a strategy based on Hart-
nett’s solution to the isothermal contact problem (Hartnett,
1979). Suppose that a plane rectangular region, referred to as the
‘blanket’ region, is chosen larger than the expected contact area
and this region is divided into N rectangular segmentsj = 1, N over
which the dimensionless pressure p; and heat flux g; are assumed
to be constant. The optimal size of the blanket for a given run of the
program and given computational resources is only just large
enough to contain the contact area.

The contact area is defined in the numerical solution by the
finite set, .oz, of rectangular segments in contact. If this set were
known, the corresponding heat fluxes could be found from the
discrete form of Eq. (20) which can be written as

2 Z Cqu 0,

jet

ieo, (27)

where Cj is a set of influence coefficients defined in Appendix A.
However, the contact set .o/ is determined by the inequalities in
the discrete form of Eq. (19) which we write

1 . —R'y?
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where Dj; is a set of influence coefficients appropriate to the second
integral in Eq. (19) and is defined in Appendix A.

We therefore adopt an iterative solution to the problem in
which Egs. (19) and (20) are solved alternately, the contact set at
the latest iteration of Eq. (19) being used in Eq. (20) and the heat
fluxes q; from the solution of Eq. (20) being taken as known in
the next iteration of Eq. (19). Notice also that in the iterative solu-
tion of Eq. (19), the parameter d must be chosen to satisfy the equi-
librium condition (21) which has the discrete form

> bA=5. (29)
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where 4; is the area of the segment j.

3.1. Numerical validation and convergence

To validate the numerical program and also to explore the mesh
refinement required to give a good description of the thermoelastic
contact behaviour, we first apply the numerical method to the axi-
symmetric Hertizan contact problem solved analytically by Barber
(1973), for which the contact area is given by Eq. (1) and the con-
tact pressure distribution is

L. 2V@2 12 O 8 a—vaz—r2
N =—7rt il Skl (30)
T 4 TT a+1/a2_r2
where
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Fig. 2 shows the percentage difference between the analytical max-
imum contact pressure p(0) and the numerical value as a function
of the number N of elements in the contact area, for a dimensionless
temperature difference ® = 1. In the same figure, we also show the
percentage error in the contact radius a@ which is estimated in the
numerical solution by equating the total contact area > A;, j € «/
to 7a@?. In the following numerical results, the number of elements
in the contact area is above 14,000.

4. Non-axisymmetric results

Numerical results were obtained for various values of the
dimensionless parameters R*, ©. Fig. 3 shows pressure contours
and the extent of the contact area for R* = 5/3 and various values
of the temperature difference ©. In the isothermal case @ = 0, the
classical Hertzian analysis applies and the contact area is elliptical.
As O is increased, the contact area gets smaller and its ellipticity is
reduced. The solution can be seen as a trade-off between the elastic
and thermoelastic terms in Eq. (19). The limit ® — oo can be ap-
proached either by allowing the temperature difference to increase
without limit or by allowing R — oo, which corresponds to the con-
tact between two bodies with plane surfaces. In the latter case, it is
clear that the ratio R becomes irrelevant and the contact area is
circular, being given by Eq. (1) as

a= \/32’E (32)

or in dimensional terms
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Fig. 2. Percentage difference between the analytical and numerical values of
maximum contact pressure ((J) and contact radius (O) as a function of the number
of elements defining the contact area.

P
4= \/215*(52 oM —THK (33)

5. Elliptical approximation to the contact area

Fig. 3 shows that the contact area remains approximately ellip-
tical for all values of @ and this suggests an alternative approxi-
mate analytical approach to the problem. Suppose we assume
the contact area A to be an ellipse of prescribed dimensionless
semi-axes a, b. Eq. (20) then defines a classical problem in potential
theory with solution

2]
bK(e)\/1 — &/a2 — iz2 /b2

We next calculate the second integral term in Eq. (19), which we
write as

wixy) = 27rl§<(e) //A

This integral is evaluated in Appendix B, after which we approxi-
mate w(k,y) by the quadratic function

q(e.m) =

(34)

In(#)dédp
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(35)

WX, 3) = Co + C1&2 + Coj2. (36)

The curvatures Cq, C, are chosen so as to agree with the exact result
at the center and at the ends of the major and minor axes of the el-
lipse (+a, 0), (0, +b), giving

0=0 6=1.4

¢ M@0 ~W0.0) . 0. w0.0) a7
a b2
The constant C, can be wrapped into d in Eq. (19). This technique
was used by Yevtushenko and Kulchytsky-Zhyhailo (1996) for the
related problem of thermoelastic contact where heat is generated
at the interface due to frictional sliding.
With this approximation, Eq. (19) once again defines a classical
Hertzian contact problem for p and the semi-axes of the contact el-
lipse are defined by the modified equations

1 2] 1 2

T e “5(1) = 2 IK(e) @) (38)
R 0 . 2 [Ee)
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where

/2
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x . dp . (40)
(zlz sin” ¢ + cos? qo)

In the axisymmetric limit R* = 1,4 = 1,e = 0 and Eqgs. (38) and
(39)both reduce to

@ +0eo(1)a =1, (41)

with@(1) = m/2(1 — In(2)). Comparing with the exact expression (1),
we find that the error in the multiplier on the second term is 0.94%.

6. Results

Fig. 4 shows the dimensionless major axis a as a function of @
for various values of R* as predicted by the numerical solution
and by the approximate solution of Eqs. (38) and (39).

To compare predictions of the shape of the contact area, we
present values of the ratio 4 = b/a as a function of @ for various
values of R" in Fig. 5. It is clear that thermoelastic effects tend to
reduce the ellipticity of the contact area. In the limit ® — oo, the
contact area becomes circular and the solution is adequately de-
scribed by the axisymmetric theory. Notice that the approximate
theory consistently overestimates /. (and hence underestimates
the ellipticity e) at larger values of ®. Numerical predictions of 4
in the isothermal (Hertzian) case ©® =0 are extremely good, so
we conclude that this discrepancy is a real effect and not attribut-
able to discretization.

To obtain a more robust characterization of the shape of the
contact area predicted by the numerical solution, we first defined
the points on the discrete boundary in the form of a piecewise con-
tinuous function #(0) in polar coordinates. If the contact area were
a true ellipse, we would have

#2cos 0 2 sin0?
o pEP) =1 (42)
and hence

0=2.8

©=4.2 0=5.6

Fig. 3. Contact pressure distribution and extent of the contact area for R* = 5/3 and various values of the dimensionless temperature difference ©.
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o
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Fig. 4. Dimensionless major axis of the contact area (a) as a function of
dimensionless temperature difference ©. The circles and the solid lines represent
the numerical and approximate analytical solutions, respectively.

o

0 2 4 6 8 10
S}

Fig. 5. The ratio of major/minor axes of the contact area (4 = b/a) as a function of
dimensionless temperature difference ©. The circles and the solid lines represent
the numerical and approximate analytical solutions, respectively.

) 2a2?
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It then follows that the Fourier series representation of the function
‘1 o0

fo)= == > cancos(2n0). (44)
n=0

would have only two non-zero coefficients, co, c,.

Table 1 shows the first four coefficients of this series for R* =5
and several values of ©. In the first two columns, we compare the
numerical values of the coefficients with the exact (Hertzian) val-
ues from Eqs. (43) and (44). The magnitude of the higher coeffi-
cients c4,Cg,... in the numerical solution for ® = 0 provides an
indication of the error due to discretization. For @0, the third
coefficient c4 is significantly larger than this error and hence de-
scribes a real effect. Its sign is such as to indicate an elongation
of the contact area on the major and minor axes and a reduction
in 7(0) at 6 = 45°. However, the higher coefficients are still much
smaller than ¢y, c; indicating that the contact area remains pre-
dominantly elliptical.

Table 1
Comparison of Fourier coefficients for the series (44) with the approximate analytical
solution.

2] 0 3.95 7.89
Hertzian Numerical

Co 1.42 1.41 339 5.56

@ =112 —~1.11 -1.16 -1.08

Cy 0 0.0049 -0.016 —0.053

s 0 —0.0059 0.012 0.045

Cs 0 0.0074 -0.019 —0.003

7. Conclusion

We have presented a numerical solution and an approximate
analytical solution to the problem of the general thermoelastic
Hertzian contact problem with heat flow through the contact area
driven by a temperature difference between the extremities of the
two contacting bodies. The solution is characterized by only two
dimensionless parameters, the ratio R* of principal curvatures of
the bodies which governs the ellipticity of the contact area in the
isothermal (Hertzian) case, and a dimensionless temperature dif-
ference ©.

The contact area remains substantially elliptical for all values of
O, but the ellipticity decreases with increasing ©, approaching the
limiting axisymmetric solution as ® — oo. The analytical approxi-
mation, based on a technique due to Yevtushenko and Kulchytsky-
Zhyhailo (1996), underestimates the ellipticity at intermediate
values of 6.

Appendix A. C; and Dj;; of Eq. (28)

If x;,y; are the coordinates of the center of the rectangular con-
tact element j of dimensions 2h x 2I, the influence coefficients
Cy, Dj of Egs. (27) and (28) are

Gy =904\ Gy =3+ + (% + h)?
G5 =35 =D+ /Gy =5 =D + R — &+ h)?
G —9i— D+ \/(5’1‘ —Ji =%+ (X — % — h)?

Gy =3+ 4/ Gy =i+ D% + (% — & — h)?
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X . -)24—;?,4+f1+ A-—A,»+i2+5cv—5<,-+f12-
G| B RD VO -3+ D2+ G %+ h)

(& —%i—h) + VO -3+ + (g% - hy* |

; (’zj—ﬁi—fl)Jr\/(5’1'—?1‘—])24—(’21—5@—}1)2
| (% —%i+ )+ VO =317+ & —%i+h)| /
(45)

Dy=(h—(%—&)) (I+ 05— 90) ) In{(h— (% =)+ (+ 05 -9}
0550 (L G5 Inf (o G50+ (1+05-90) )
(1= G3-30) Inf(h+ (550 + (1-G3-90) )
(1= 05=30)) In{(h— (& %)) + (= §;=0))"}
|

arctan (M) +arctan (WJ)]

h+ (X —X) h+ (% —%)
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Appendix B. Evaluation of Eq. (35)

Following Yevtushenko and Kulchytsky-Zhyhailo (1996), we
note that

//f&ﬁln (F)dédi = / /f
where

s ) / /f%ﬁ e~ & gy (48)

is the double Fourier transform of f(&, 7).
For the integral in Eq. (35), we have

~ e—1(Es+it) dgd;/, COS(&S-F’AYt)dEdﬁ
fso=1 1 m
//A 1*52/(12 // 17%2/&2,{72/172

and the ellipse A can be mapped to the unit circle using the change
of variable ¢ = apcos ¢, 7 = bpsin ®, giving

ex(xs+yt det

47
(s2+1t%) @7

_ A pdp 2n ) P
s, t :ab/ — cos (p(ascos ¢ + bt sin d
foty=ab | —=s | cosplascosg ¢))do

2ab Y
:Lﬂb]ﬂl]]/z< (1232+b2t2>, (50)

(st + boe?)

using Gradshteyn and Ryzhik (1980), 3.937.2 and 6.567.1.
Using this result in Eq. (47), we obtain

Jl/z
—n\/_ab//

but this integral is unbounded because of the behaviour of the inte-
grand at the origin. This is to be expected, since if the net heat flow
into a body is not zero, the ‘rigid-body’ thermoelastic displacement
of the heated region is unbounded relative to the point at infinity
(Barber, 1971). However, only the shape of the thermoelastically dis-
torted surface plays a role in the contact problem, and the integral

L= 1 oh
* = nv2mab 0%

Sk

a2s2 4 bztz) cos(xs + yt)dsdt

(31
1/4
(s2 +t2) (a252 + b2t2) !

azs? + b2t2> sin(Xs + yt)sdsdt

1/4
(s2 +t%) (a252 + bztz)

is bounded. Using the change of variable pcos ¢ = as,psin ¢ = bt,
we then obtain

) sin(py)dp

]1/2
p12

_ /2” cospdg
’ a2 sin” ¢ + b2 cos? ¢

_bv2 P yF(Q, 1/2 3/2,y?) cos pdo
_ / (53)
@ sin’ ¢ + b2 cos? @
from Gradshteyn and Ryzhik (1980), 6.699.1, where
V= g cos ¢ +% sin @ (54)

and F(a, B, 7,x) is the Gauss hypergeometric function.

Using Gradshteyn and Ryzhik (1980), 9.121.1, 9.121.7, and
9.137.3 and results from Yevtushenko and Kulchytsky-Zhyhailo
(1996), we obtain

WF(1,1/2,3/2,y%) = arctanh(y) = % In (%) (55)

and hence we can write

™ arctanh(y) cos @ dg

A A .2
O _ o amabl, — —2mab? / B S . (56)
ox Jo  @2sin® ¢ + b2 cos? ¢
A similar procedure can be used to determine 9I; /9y after which we
deduce that the integral I; has the form

P——r /2“ [y-arctanh(y) + 1 In(1 — .pz)]dg (57)
0

@ sin® ¢ + b2 cos? ¢

apart from an ‘infinite’ constant which can be wrapped into d.

References

Clausing, A.M., 1966. Heat transfer at the interface between dissimilar metals - the
influence of thermal strain. International Journal of Heat and Mass Transfer 9,
791-801.

Barber, J.R., 1971. The solution of heated punch problems by point source methods.
International Journal Engineering Science 9, 1165-1170.

Barber, J.R., 1973. Indentation of the semi-infinite elastic solids by a hot sphere.
International Journal of Mechanical Science 15, 813-819.

Barber, J.R., 1978. Contact problems involving a cooled punch. Journal of Elasticity 8,
409-423.

Kulchytsky-Zhyhailo, R.D., Olesiak, Z.S., Yevtushenko, 0.0., 2001. On thermal
contact of two axially symmetric elastic solids. Journal of Elasticity 63, 1-17.

Gradshteyn, LS., Ryzhik, .M. 1980. Tables of Integrals Series and Products.
Academic Press, New York.

Hartnett, M.J., 1979. Analysis of contact stresses in rolling element bearings. Journal
of Lubrication Technology - Transaction of ASME 101, 105-109.

Johnson, K.L., 1985. Contact Mechanics. Cambridge University Press, Cambridge,
MA.

Yevtushenko, A.A., Kulchytsky-Zhyhailo, R.D., 1996. Approximation solution of
the thermoelastic contact problem with frictional heating in the general case
of the profile shape. Journal of the Mechanics and Physics of Solids 44, 243-
250.



	The thermoelastic Hertzian contact problem
	Introduction
	Statement of the problem
	The heat conduction problem
	The contact problem
	Dimensionless formulation

	Numerical implementation
	Numerical validation and convergence

	Non-axisymmetric results
	Elliptical approximation to the contact area
	Results
	Conclusion
	{C}_{ij} and {D}_{ij} of Eq. (28)
	Evaluation of Eq. (35)
	References


