6,172 research outputs found
Study to determine peening stress profile of rod peened aluminum structural alloys versus shot peened material
The objective of this program was to determine the peening stress profiles of rod peened aluminum structural alloys versus shot peened material to define the effective depth of the compressed surface layer
Assemblage Structure, Production, and Food Web Dynamics of Macroinvertebrates in Tropical Island Headwater Streams
Variation in long-term temperature and precipitation patterns will likely influence the decomposition and export of benthic organic matter and influence aquatic macroinvertebrate consumer communities. Tropical systems are relatively understudied; therefore basal information is urgently needed. As part of an ongoing long-term study, we monitored macroinvertebrates in two shrimp-dominated and fishless headwater streams within the Luquillo Experimental Forest in Puerto Rico from 2009-2010. We combined growth rates with yearly biomass data to calculate secondary production and examined gut contents to develop quantitative food webs. Macroinvertebrate assemblages were dominated by a few insect taxa, with similar biotic composition across streams and habitats, but different structure amongst habitats. Biomass and abundance were generally greater in pools, suggesting that pools may provide habitat stability and shelter. Alternatively, shrimp may provide secondary benefits by removing fine sediments given their high density of in pools. Overall, aquatic insects had low biomass; therefore, their production was relatively low as is the case in most tropical areas. However, their turnover rates were not as high as expected. Secondary production appears to rely more on amorphous detritus and allochthonous organic matter rather than algal resources. These data are an important first step towards predicting the long-term effects that expected changes in rainfall and discharge will have in tropical stream communities
Beyond conventional factorization: Non-Hermitian Hamiltonians with radial oscillator spectrum
The eigenvalue problem of the spherically symmetric oscillator Hamiltonian is
revisited in the context of canonical raising and lowering operators. The
Hamiltonian is then factorized in terms of two not mutually adjoint factorizing
operators which, in turn, give rise to a non-Hermitian radial Hamiltonian. The
set of eigenvalues of this new Hamiltonian is exactly the same as the energy
spectrum of the radial oscillator and the new square-integrable eigenfunctions
are complex Darboux-deformations of the associated Laguerre polynomials.Comment: 13 pages, 7 figure
Exactly Solvable Hydrogen-like Potentials and Factorization Method
A set of factorization energies is introduced, giving rise to a
generalization of the Schr\"{o}dinger (or Infeld and Hull) factorization for
the radial hydrogen-like Hamiltonian. An algebraic intertwining technique
involving such factorization energies leads to derive -parametric families
of potentials in general almost-isospectral to the hydrogen-like radial
Hamiltonians. The construction of SUSY partner Hamiltonians with ground state
energies greater than the corresponding ground state energy of the initial
Hamiltonian is also explicitly performed.Comment: LaTex file, 21 pages, 2 PostScript figures and some references added.
To be published in J. Phys. A: Math. Gen. (1998
MamĂferos encontrados em dois castanhais localizados ao sudoeste do Estado do Acre, Brasil.
bitstream/CPAF-AC-2010/22928/1/publicacao113.pd
Temperature affects the morphology and calcification of Emiliania huxleyi strains
The global warming debate has sparked an unprecedented interest in temperature effects on coccolithophores. The calcification response to temperature changes reported in the literature, however, is ambiguous. The two main sources of this ambiguity are putatively differences in experimental setup and strain specificity. In this study we therefore compare three strains isolated in the North Pacific under identical experimental conditions. Three strains of Emiliania huxleyi type A were grown under non-limiting nutrient and light conditions, at 10, 15, 20 and 25 °C. All three strains displayed similar growth rate versus temperature relationships, with an optimum at 20–25 °C. Elemental production (particulate inorganic carbon (PIC), particulate organic carbon (POC), total particulate nitrogen (TPN)), coccolith mass, coccolith size, and width of the tube element cycle were positively correlated with temperature over the sub-optimum to optimum temperature range. The correlation between PIC production and coccolith mass/size supports the notion that coccolith mass can be used as a proxy for PIC production in sediment samples. Increasing PIC production was significantly positively correlated with the percentage of incomplete coccoliths in one strain only. Generally, coccoliths were heavier when PIC production was higher. This shows that incompleteness of coccoliths is not due to time shortage at high PIC production. Sub-optimal growth temperatures lead to an increase in the percentage of malformed coccoliths in a strain-specific fashion. Since in total only six strains have been tested thus far, it is presently difficult to say whether sub-optimal temperature is an important factor causing malformations in the field. The most important parameter in biogeochemical terms, the PIC : POC ratio, shows a minimum at optimum growth temperature in all investigated strains. This clarifies the ambiguous picture featuring in the literature, i.e. discrepancies between PIC : POC–temperature relationships reported in different studies using different strains and different experimental setups. In summary, global warming might cause a decline in coccolithophore's PIC contribution to the rain ratio, as well as improved fitness in some genotypes due to fewer coccolith malformations
A new Mexican species of Folsomides (Collembola: Isotomidae)
AbstractA new species of Folsomides from Baja California Sur is described and illustrated. It is clearly differentiated from F. chichinautzini Kovác et Palacios-Vargas and F. decemoculatus Scherbakov by its smaller size, the different shape of the postantennal organ, the number of sensillae in the antennal segment IV, the number of dental setae and the body chaetotaxy. In addition a key for identification of the American species of Folsomides is provided
A Hamiltonian functional for the linearized Einstein vacuum field equations
By considering the Einstein vacuum field equations linearized about the
Minkowski metric, the evolution equations for the gauge-invariant quantities
characterizing the gravitational field are written in a Hamiltonian form by
using a conserved functional as Hamiltonian; this Hamiltonian is not the analog
of the energy of the field. A Poisson bracket between functionals of the field,
compatible with the constraints satisfied by the field variables, is obtained.
The generator of spatial translations associated with such bracket is also
obtained.Comment: 5 pages, accepted in J. Phys.: Conf. Serie
Season of the year influences infection rates following total hip arthroplasty
To research the influence of season of the year on periprosthetic joint infections. METHODS We conducted a retrospective review of the entire Medicare files from 2005 to 2014. Seasons were classified as spring, summer, fall or winter. Regional variations were accounted for by dividing patients into four geographic regions as per the United States Census Bureau (Northeast, Midwest, West and South). Acute postoperative infection and deep periprosthetic infections within 90 d after surgery were tracked. RESULTS In all regions, winter had the highest incidence of periprosthetic infections (mean 0.98%, SD 0.1%) and was significantly higher than other seasons in the Midwest, South and West (P \u3c 0.05 for all) but not the Northeast (P = 0.358). Acute postoperative infection rates were more frequent in the summer and were significantly affected by season of the year in the West. CONCLUSION Season of the year is a risk factor for periprosthetic joint infection following total hip arthroplasty (THA). Understanding the influence of season on outcomes following THA is essential when risk-stratifying patients to optimize outcomes and reduce episode of care costs. © The Author(s) 2017
- …