122 research outputs found

    A method for accurate detection of genomic microdeletions using real-time quantitative PCR

    Get PDF
    BACKGROUND: Quantitative Polymerase Chain Reaction (qPCR) is a well-established method for quantifying levels of gene expression, but has not been routinely applied to the detection of constitutional copy number alterations of human genomic DNA. Microdeletions or microduplications of the human genome are associated with a variety of genetic disorders. Although, clinical laboratories routinely use fluorescence in situ hybridization (FISH) to identify such cryptic genomic alterations, there remains a significant number of individuals in which constitutional genomic imbalance is suspected, based on clinical parameters, but cannot be readily detected using current cytogenetic techniques. RESULTS: In this study, a novel application for real-time qPCR is presented that can be used to reproducibly detect chromosomal microdeletions and microduplications. This approach was applied to DNA from a series of patient samples and controls to validate genomic copy number alteration at cytoband 22q11. The study group comprised 12 patients with clinical symptoms of chromosome 22q11 deletion syndrome (22q11DS), 1 patient trisomic for 22q11 and 4 normal controls. 6 of the patients (group 1) had known hemizygous deletions, as detected by standard diagnostic FISH, whilst the remaining 6 patients (group 2) were classified as 22q11DS negative using the clinical FISH assay. Screening of the patients and controls with a set of 10 real time qPCR primers, spanning the 22q11.2-deleted region and flanking sequence, confirmed the FISH assay results for all patients with 100% concordance. Moreover, this qPCR enabled a refinement of the region of deletion at 22q11. Analysis of DNA from chromosome 22 trisomic sample demonstrated genomic duplication within 22q11. CONCLUSION: In this paper we present a qPCR approach for the detection of chromosomal microdeletions and microduplications. The strategic use of in silico modelling for qPCR primer design to avoid regions of repetitive DNA, whilst providing a level of genomic resolution greater than standard cytogenetic assays. The implementation of qPCR detection in clinical laboratories will address the need to replace complex, expensive and time consuming FISH screening to detect genomic microdeletions or duplications of clinical importance

    Investigating the mechanisms of methotrexate neurotoxicity in patients with childhood leukaemia and long-term survivors.

    Get PDF
    Background/Objectives Adverse neurological events are common (4-20%) during treatment for pediatric acute lymphoblastic leukaemia (ALL) and include seizures, stroke like syndrome and leukoencephalopathy. In addition, chronic neurotoxicity is emerging as a worrying late effect of treatment with long-term survivors experiencing decreased executive function, processing speed and memory function. Survivors are also at increased risk of experiencing learning difficulties, social withdrawal issues and inattention hyperactivity disorders. Methotrexate, an anti-folate chemotherapy agent, is a mainstay of pediatric leukemia treatment regimens globally and is widely implicated as a cause of these neurological side effects. We hypothesise that methotrexate disrupts DNA methylation via effects on S-adenosyl methionine, a key metabolic component that has previously been described to regulate genes involved in myelination. Design/Methods Using both the oligodendrocytic-like cell line MO3.13 and glial cells derived from induced pluripotent stem cells (iPSC) treated with methotrexate, we assayed for changes in DNA methylation and effects on gene expression using whole-genome methylation arrays and RNAseq, respectively. Genes with corresponding methylation and expression changes were selected for further studies of expression by real-time qPCR and assessment of protein levels. Results We identified DNA methylation and corresponding expression changes in genes involved in neurodevelopmental pathways and neurological disorders. Of particular interest was dose-dependent demethylation and increased gene expression of IRS1, a vital component of insulin signalling pathways that is highly expressed in neural tissue and implicated in regulating cognitive performance. We also detected altered DNA methylation within the PLP1 gene, which encodes the most prevalent protein component of myelin. We found that methotrexate treatment in iPSC-derived oligodendrocytes resulted in increased PLP1 methylation associated with a reduction in PLP1 transcript levels as well as PLP1 protein levels. Conclusions Our work provides insight as to the biological mechanisms behind methotrexate-induced neurological side effects for the first time and implicates altered insulin signalling and myelination pathways as a potential causative factor in neurotoxicity. Further work including the use of animal models is warranted for advancing these results towards informing clinical practice

    Sonographic Assessment of Renal Growth in Patients with Beckwith-Wiedemann Syndrome: The Beckwith-Wiedemann Syndrome Renal Nomogram

    Get PDF
    BACKGROUND: Beckwith-Wiedemann syndrome is a disorder of somatic overgrowth. Evidence of kidney overgrowth is a diagnostic criterion that may be used to help identify those patients who are at the greatest risk of developing Wilms tumors. In such subjects, kidney size is typically larger than that of age-matched normal controls. OBJECTIVE: The purpose of our study was to generate a nomogram that could be used to measure renal dimensions in children with Beckwith-Wiedemann syndrome in a clinical setting. MATERIALS & METHODS: All of the Beckwith-Wiedemann syndrome patients followed at our institution from 1996 to 2004 were eligible for inclusion in our study. Renal length was measured with a curvilinear transducer and with the patient supine. Renal lengths were measured for both kidneys using real-time ultrasound for all patients. Their data were compared with those of age-matched controls reported in the 1984 study by Rosenbaum et al. RESULTS: Ninety-six children with Beckwith-Wiedemann syndrome were followed from 1996 to 2004. Forty-three of these patients met our criteria for inclusion in the study: 28 girls (65%) and 15 boys (35%). We identified a linear relationship between kidney length and patient age. No statistically significant differences in renal length were found between boys and girls (p=0.2153) or between the kidneys on either side of the body (p=0.9613). CONCLUSION: Our study provides a practical, simple renal growth chart that offers a reasonable, sensitive method for evaluating kidney size in children with Beckwith-Wiedemann syndrome

    The health risks of ART

    Full text link

    Screening for genes that accelerate the epigenetic aging clock in humans reveals a role for the H3K36 methyltransferase NSD1

    Get PDF
    Background: Epigenetic clocks are mathematical models that predict the biological age of an individual using DNA methylation data and have emerged in the last few years as the most accurate biomarkers of the aging process. However, little is known about the molecular mechanisms that control the rate of such clocks. Here, we have examined the human epigenetic clock in patients with a variety of developmental disorders, harboring mutations in proteins of the epigenetic machinery. Results: Using the Horvath epigenetic clock, we perform an unbiased screen for epigenetic age acceleration in the blood of these patients. We demonstrate that loss-of-function mutations in the H3K36 histone methyltransferase NSD1, which cause Sotos syndrome, substantially accelerate epigenetic aging. Furthermore, we show that the normal aging process and Sotos syndrome share methylation changes and the genomic context in which they occur. Finally, we found that the Horvath clock CpG sites are characterized by a higher Shannon methylation entropy when compared with the rest of the genome, which is dramatically decreased in Sotos syndrome patients. Conclusions: These results suggest that the H3K36 methylation machinery is a key component of the epigenetic maintenance system in humans, which controls the rate of epigenetic aging, and this role seems to be conserved in model organisms. Our observations provide novel insights into the mechanisms behind the epigenetic aging clock and we expect will shed light on the different processes that erode the human epigenetic landscape during aging

    Screening for genes that accelerate the epigenetic aging clock in humans reveals a role for the H3K36 methyltransferase NSD1.

    Get PDF
    BACKGROUND: Epigenetic clocks are mathematical models that predict the biological age of an individual using DNA methylation data and have emerged in the last few years as the most accurate biomarkers of the aging process. However, little is known about the molecular mechanisms that control the rate of such clocks. Here, we have examined the human epigenetic clock in patients with a variety of developmental disorders, harboring mutations in proteins of the epigenetic machinery. RESULTS: Using the Horvath epigenetic clock, we perform an unbiased screen for epigenetic age acceleration in the blood of these patients. We demonstrate that loss-of-function mutations in the H3K36 histone methyltransferase NSD1, which cause Sotos syndrome, substantially accelerate epigenetic aging. Furthermore, we show that the normal aging process and Sotos syndrome share methylation changes and the genomic context in which they occur. Finally, we found that the Horvath clock CpG sites are characterized by a higher Shannon methylation entropy when compared with the rest of the genome, which is dramatically decreased in Sotos syndrome patients. CONCLUSIONS: These results suggest that the H3K36 methylation machinery is a key component of the epigenetic maintenance system in humans, which controls the rate of epigenetic aging, and this role seems to be conserved in model organisms. Our observations provide novel insights into the mechanisms behind the epigenetic aging clock and we expect will shed light on the different processes that erode the human epigenetic landscape during aging

    Disruption of genomic neighbourhood at the imprinted IGF2-H19 locus in Beckwith–Wiedemann syndrome and Silver–Russell syndrome

    Get PDF
    Hyper- and hypomethylation at the IGF2-H19 imprinting control region (ICR) result in reciprocal changes in IGF2-H19 expression and the two contrasting growth disorders, Beckwith–Wiedemann syndrome (BWS) and Silver–Russell syndrome (SRS). DNA methylation of the ICR controls the reciprocal imprinting of IGF2 and H19 by preventing the binding of the insulator protein, CTCF. We here show that local changes in histone modifications and CTCF–cohesin binding at the ICR in BWS and SRS together with DNA methylation correlate with the higher order chromatin structure at the locus. In lymphoblastoid cells from control individuals, we found the repressive histone H3K9me3 and H4K20me3 marks associated with the methylated paternal ICR allele and the bivalent H3K4me2/H3K27me3 mark together with H3K9ac and CTCF–cohesin associated with the non-methylated maternal allele. In patient-derived cell lines, the mat/pat asymmetric distribution of these epigenetic marks was lost with H3K9me3 and H4K20me3 becoming biallelic in the BWS and H3K4me2, H3K27me3 and H3K9ac together with CTCF–cohesin becoming biallelic in the SRS. We further show that in BWS and SRS cells, there is opposing chromatin looping conformation mediated by CTCF–cohesin binding sites surrounding the locus. In normal cells, lack of CTCF–cohesin binding at the paternal ICR is associated with monoallelic interaction between two CTCF sites flanking the locus. CTCF–cohesin binding at the maternal ICR blocks this interaction by associating with the CTCF site downstream of the enhancers. The two alternative chromatin conformations are differently favoured in BWS and SRS likely predisposing the locus to the activation of IGF2 or H19, respectively

    Peripheral blood DNA methylation and neuroanatomical responses to HDACi treatment that rescues neurological deficits in a Kabuki syndrome mouse model

    Get PDF
    Publisher Copyright: © 2023, The Author(s). © 2023. The Author(s).Background: Recent findings from studies of mouse models of Mendelian disorders of epigenetic machinery strongly support the potential for postnatal therapies to improve neurobehavioral and cognitive deficits. As several of these therapies move into human clinical trials, the search for biomarkers of treatment efficacy is a priority. A potential postnatal treatment of Kabuki syndrome type 1 (KS1), caused by pathogenic variants in KMT2D encoding a histone-lysine methyltransferase, has emerged using a mouse model of KS1 (Kmt2d +/ÎČGeo). In this mouse model, hippocampal memory deficits are ameliorated following treatment with the histone deacetylase inhibitor (HDACi), AR-42. Here, we investigate the effect of both Kmt2d +/ÎČGeo genotype and AR-42 treatment on neuroanatomy and on DNA methylation (DNAm) in peripheral blood. While peripheral blood may not be considered a “primary tissue” with respect to understanding the pathophysiology of neurodevelopmental disorders, it has the potential to serve as an accessible biomarker of disease- and treatment-related changes in the brain. Methods: Half of the KS1 and wildtype mice were treated with 14 days of AR-42. Following treatment, fixed brain samples were imaged using MRI to calculate regional volumes. Blood was assayed for genome-wide DNAm at over 285,000 CpG sites using the Illumina Infinium Mouse Methylation array. DNAm patterns and brain volumes were analyzed in the four groups of animals: wildtype untreated, wildtype AR-42 treated, KS1 untreated and KS1 AR-42 treated. Results: We defined a DNAm signature in the blood of KS1 mice, that overlapped with the human KS1 DNAm signature. We also found a striking 10% decrease in total brain volume in untreated KS1 mice compared to untreated wildtype, which correlated with DNAm levels in a subset KS1 signature sites, suggesting that disease severity may be reflected in blood DNAm. Treatment with AR-42 ameliorated DNAm aberrations in KS1 mice at a small number of signature sites. Conclusions: As this treatment impacts both neurological deficits and blood DNAm in mice, future KS clinical trials in humans could be used to assess blood DNAm as an early biomarker of therapeutic efficacy.Peer reviewe

    The transcriptional repressor bs69 is a conserved target of the e1a proteins from several human adenovirus species

    Get PDF
    Early region 1A (E1A) is the first viral protein produced upon human adenovirus (HAdV) infection. This multifunctional protein transcriptionally activates other HAdV early genes and reprograms gene expression in host cells to support productive infection. E1A functions by interacting with key cellular regulatory proteins through short linear motifs (SLiMs). In this study, the molecular determinants of interaction between E1A and BS69, a cellular repressor that negatively regulates E1A transactivation, were systematically defined by mutagenesis experiments. We found that a minimal sequence comprised of MPNLVPEV, which contains a conserved PXLXP motif and spans residues 112–119 in HAdV-C5 E1A, was necessary and sufficient in binding to the myeloid, Nervy, and DEAF-1 (MYND) domain of BS69. Our study also identified residues P113 and L115 as critical for this interaction. Furthermore, the HAdV-C5 and-A12 E1A proteins from species C and A bound BS69, but those of HAdV-B3,-E4,-D9,-F40, and-G52 from species B, E, D, F, and G, respectively, did not. In addition, BS69 functioned as a repressor of E1A-mediated transactivation, but only for HAdV-C5 and HAdV-A12 E1A. Thus, the PXLXP motif present in a subset of HAdV E1A proteins confers interaction with BS69, which serves as a negative regulator of E1A mediated transcriptional activation
    • 

    corecore