
Western University Western University 

Scholarship@Western Scholarship@Western 

Paediatrics Publications Paediatrics Department 

8-14-2019 

Screening for genes that accelerate the epigenetic aging clock in Screening for genes that accelerate the epigenetic aging clock in 

humans reveals a role for the H3K36 methyltransferase NSD1 humans reveals a role for the H3K36 methyltransferase NSD1 

Daniel E. Martin-Herranz 
European Bioinformatics Institute 

Erfan Aref-Eshghi 
Western University 

Marc Jan Bonder 
European Bioinformatics Institute 

Thomas M. Stubbs 
Chronomics Ltd 

Sanaa Choufani 
Hospital for Sick Children University of Toronto 

See next page for additional authors 

Follow this and additional works at: https://ir.lib.uwo.ca/paedpub 

Citation of this paper: Citation of this paper: 
Martin-Herranz, Daniel E.; Aref-Eshghi, Erfan; Bonder, Marc Jan; Stubbs, Thomas M.; Choufani, Sanaa; 
Weksberg, Rosanna; Stegle, Oliver; Sadikovic, Bekim; Reik, Wolf; and Thornton, Janet M., "Screening for 
genes that accelerate the epigenetic aging clock in humans reveals a role for the H3K36 
methyltransferase NSD1" (2019). Paediatrics Publications. 2492. 
https://ir.lib.uwo.ca/paedpub/2492 

https://ir.lib.uwo.ca/
https://ir.lib.uwo.ca/paedpub
https://ir.lib.uwo.ca/paed
https://ir.lib.uwo.ca/paedpub?utm_source=ir.lib.uwo.ca%2Fpaedpub%2F2492&utm_medium=PDF&utm_campaign=PDFCoverPages
https://ir.lib.uwo.ca/paedpub/2492?utm_source=ir.lib.uwo.ca%2Fpaedpub%2F2492&utm_medium=PDF&utm_campaign=PDFCoverPages


Authors Authors 
Daniel E. Martin-Herranz, Erfan Aref-Eshghi, Marc Jan Bonder, Thomas M. Stubbs, Sanaa Choufani, 
Rosanna Weksberg, Oliver Stegle, Bekim Sadikovic, Wolf Reik, and Janet M. Thornton 

This article is available at Scholarship@Western: https://ir.lib.uwo.ca/paedpub/2492 

https://ir.lib.uwo.ca/paedpub/2492


RESEARCH Open Access

Screening for genes that accelerate the
epigenetic aging clock in humans reveals
a role for the H3K36 methyltransferase
NSD1
Daniel E. Martin-Herranz1,2* , Erfan Aref-Eshghi3,4, Marc Jan Bonder1,5, Thomas M. Stubbs2, Sanaa Choufani6,
Rosanna Weksberg6, Oliver Stegle1,5,7, Bekim Sadikovic3,4, Wolf Reik8,9,10*† and Janet M. Thornton1*†

Abstract

Background: Epigenetic clocks are mathematical models that predict the biological age of an individual using DNA
methylation data and have emerged in the last few years as the most accurate biomarkers of the aging process.
However, little is known about the molecular mechanisms that control the rate of such clocks. Here, we have
examined the human epigenetic clock in patients with a variety of developmental disorders, harboring mutations in
proteins of the epigenetic machinery.

Results: Using the Horvath epigenetic clock, we perform an unbiased screen for epigenetic age acceleration in the
blood of these patients. We demonstrate that loss-of-function mutations in the H3K36 histone methyltransferase
NSD1, which cause Sotos syndrome, substantially accelerate epigenetic aging. Furthermore, we show that the
normal aging process and Sotos syndrome share methylation changes and the genomic context in which they
occur. Finally, we found that the Horvath clock CpG sites are characterized by a higher Shannon methylation
entropy when compared with the rest of the genome, which is dramatically decreased in Sotos syndrome patients.

Conclusions: These results suggest that the H3K36 methylation machinery is a key component of the epigenetic
maintenance system in humans, which controls the rate of epigenetic aging, and this role seems to be conserved in
model organisms. Our observations provide novel insights into the mechanisms behind the epigenetic aging clock
and we expect will shed light on the different processes that erode the human epigenetic landscape during aging.

Keywords: Aging, Epigenetics, DNA methylation, Epigenetic clock, Biological age, Developmental disorder, Sotos
syndrome, H3K36 methylation, NSD1, Methylation entropy

Background
Aging is normally defined as the time-dependent func-
tional decline which increases vulnerability to common
diseases and death in most organisms [1]. However, the
molecular processes that drive the emergence of age-
related diseases are only beginning to be elucidated.
With the passage of time, dramatic and complex changes

accumulate in the epigenome of cells, from yeast to
humans, pinpointing epigenetic alterations as one of the
hallmarks of aging [1–4].
Our understanding of the aging process has historic-

ally been hampered by the lack of tools to accurately
measure it. In recent years, epigenetic clocks have
emerged as powerful biomarkers of the aging process
across mammals [5, 6], including humans [7–9], mouse
[10–14], dogs and wolves [15], and humpback whales
[16]. Epigenetic clocks are mathematical models that are
trained to predict chronological age using the DNA
methylation status of a small number of CpG sites in the
genome. The most widely used multi-tissue epigenetic
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clock in humans was developed by Steve Horvath in
2013 [8]. Interestingly, deviations of the epigenetic
(biological) age from the expected chronological age
(aka epigenetic age acceleration or EAA) have been asso-
ciated with many conditions in humans, including time-
to-death [17, 18], HIV infection [19], Down syndrome
[20], obesity [21], Werner syndrome [22], and Hunting-
ton’s disease [23]. On the contrary, children with multi-
focal developmental dysfunctions (syndrome X), which
seem to evade aging, did not display slower epigenetic
aging in a previous study [24]. In mice, the epigenetic
clock is slowed down by dwarfism and calorie restriction
[11–14, 25] and is accelerated by ovariectomy and high-
fat diet [10, 13]. Furthermore, in vitro reprogramming of
somatic cells into iPSCs reduces epigenetic age to values
close to zero both in humans [8] and mice [11, 14], which
opens the door to potential rejuvenation therapies [26, 27].
Epigenetic clocks can be understood as a proxy to

quantify the changes of the epigenome with age. How-
ever, little is known about the molecular mechanisms
that determine the rate of these clocks. Steve Horvath
proposed that the multi-tissue epigenetic clock captures
the workings of an epigenetic maintenance system [8].
Recent GWAS studies have found several genetic vari-
ants associated with epigenetic age acceleration in genes
such as TERT (the catalytic subunit of telomerase) [28],
DHX57 (an ATP-dependent RNA helicase) [29], or
MLST8 (a subunit of both mTORC1 and mTORC2
complexes) [29]. Nevertheless, to our knowledge, no
genetic variants in epigenetic modifiers have been found
and the molecular nature of this hypothetical system is
unknown to this date.
We decided to take a reverse genetics approach and

look at the behavior of the epigenetic clock in patients
with developmental disorders, many of which harbor
mutations in proteins of the epigenetic machinery [30,
31]. We performed an unbiased screen for epigenetic
age acceleration and found that Sotos syndrome acceler-
ates epigenetic aging, potentially revealing a role of
H3K36 methylation maintenance in the regulation of the
rate of the epigenetic clock.

Results
Screening for epigenetic age acceleration is improved
when correcting for batch effects
The main goal of this study is to identify genes, mainly
components of the epigenetic machinery, that can affect
the rate of epigenetic aging in humans (as measured by
Horvath’s epigenetic clock) [8]. For this purpose, we
conducted an unbiased screen for epigenetic age acceler-
ation (EAA) in samples from patients with developmen-
tal disorders that we could access and for which
genome-wide DNA methylation data was available
(Table 1, Additional file 2). Horvath’s epigenetic clock,

unlike other epigenetic clocks available in the literature,
works across the entire human lifespan (even in prenatal
samples), and it is therefore well suited for this type of
analysis [5, 8, 32]. All the DNA methylation data were
generated from the blood using the Illumina Human-
Methylation450 array (450K array).
The main step in the screening methodology is to

compare the EAA distribution for the samples with a
given developmental disorder against a robust control
(Fig. 1a). In our case, the control set was obtained from
human blood samples in a healthy population of individ-
uals that matched the age range of the developmental
disorder samples (Additional file 3). Given that the EAA
reflects deviations between the epigenetic (biological)
age and the chronological age of a sample, we would
expect the EAA distributions of the controls to be cen-
tered around zero, which is equivalent to the situation
when the median absolute error (MAE) of the model
prediction is close to zero (see the “Methods” section).
This was not the case for the samples obtained from
several control batches (Additional file 1: Figure S1A,
S1B), both in the case of EAA models with and without
cell composition correction (CCC). It is worth noting
that these results were obtained even after applying the
internal normalization step against a blood gold standard
suggested by Horvath [8]. Therefore, we hypothesized
that part of the deviations observed might be caused by
technical variance that was affecting epigenetic age pre-
dictions in the different batches.
We decided to correct for the potential batch effects

by making use of the control probes present on the
450K array, which have been shown to carry information
about unwanted variation from a technical source (i.e.,
technical variance) [33–35]. Performing principal com-
ponents analysis (PCA) on the raw intensities of the
control probes showed that the first two components
(PCs) capture the batch structure in both controls
(Fig. 1b) and cases (Additional file 1: Figure S1C).
Including the first 17 PCs as part of the EAA modeling
strategy (see the “Methods” section), which together
accounted for 98.06% of the technical variance in
controls and cases (Additional file 1: Figure S1D), signifi-
cantly reduced the median absolute error (MAE) of the
predictions in the controls (MAE without CCC = 2.8211
years, MAE with CCC = 2.7117 years, mean MAE = 2.7664
years, Fig. 1c). These values are below the original MAE
reported by Horvath in his test set (3.6 years) [8].
Finally, deviations from a median EAA close to zero in

some of the control batches after batch effect correction
(Fig. 1d, Additional file 1: Figure S1E) could be explained
by other variables, such as a small batch size or an over-
representation of young samples (Additional file 1:
Figure S1F). The latter is a consequence of the fact that
Horvath’s model underestimates the epigenetic ages of
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older samples, a phenomenon which has also been ob-
served by other authors [36, 37]. If there is a high num-
ber of old samples (generally > 60 years) in the control
model, this can lead to a lower model slope, which
would incorrectly assign negative EAA to young
samples. This highlights the importance of having an
age distribution in the control samples that matches that
of the cases to be tested for differences in EAA.
Thus, we have shown that correcting for batch effects

in the context of the epigenetic clock is important, espe-
cially when combining datasets from different sources
for meta-analysis purposes. Batch effect correction is
essential to remove technical variance that could affect
the epigenetic age of the samples and confound bio-
logical interpretation.

Sotos syndrome accelerates epigenetic aging
Once we had corrected for potential batch effects in the
data, we compared the epigenetic age acceleration
(EAA) distributions between each of the developmental
disorders studied and our control set. For a given
sample, a positive EAA indicates that the epigenetic
(biological) age of the sample is higher than the one
expected for someone with that chronological age. In
other words, it means that the epigenome of that person
resembles the epigenome of an older individual. The
opposite is true when a negative EAA is found (i.e., the
epigenome looks younger than expected).
For the main screen, we selected those control samples

with the same age range as the one present when aggre-
gating all the cases (0 to 55 years), since this permits the

development of a common control (background) model
and to compare the statistical significance of the results
across developmental disorders. Only those developmen-
tal disorders that satisfied our filtering criteria were con-
sidered for the screen (at least 5 samples available for
the developmental disorder, with 2 of them presenting a
chronological age ≥ 20 years, Fig. 1a, Table 1 and
Additional file 2). Given that the blood composition
changes with age (changes in the different cell type pro-
portions, which can affect bulk DNA methylation mea-
surements), we used models with and without cell
composition correction (CCC), correcting for batch
effects in both of them (see the “Methods” section). It is
important to mention that EAAwith CCC is conceptually
similar to the previously reported measure of “intrinsic
EAA” (IEAA) [18, 38].
The results from the screen are portrayed in Fig. 2a.

Most syndromes do not show evidence of accelerated
epigenetic aging, but Sotos syndrome presents a clear
positive EAA (median EAAwith CCC = + 7.64 years, me-
dian EAAwithout CCC = + 7.16 years), with p values consid-
erably below the significance level of 0.01 after
Bonferroni correction (p valuecorrected, with CCC = 3.40 ×
10−9, p valuecorrected, without CCC = 2.61 × 10−7). Addition-
ally, Rett syndrome (median EAAwith CCC = + 2.68 years,
median EAAwithout CCC = + 2.46 years, p valuecorrected, with
CCC = 0.0069, p valuecorrected, without CCC = 0.0251) and
Kabuki syndrome (median EAAwith CCC = − 1.78 years,
median EAAwithout CCC = − 2.25 years, p valuecorrected, with
CCC = 0.0011, p valuecorrected, without CCC = 0.0035) reach
significance, with a positive and negative EAA,

Table 1 Overview of the developmental disorders that were included in the screening (total N = 367) after quality control (QC) and
filtering (see the “Methods” section and Fig. 1a)

Developmental disorder Gene(s)
involved

Gene(s) function Molecular cause Number Age range
(years)

Angelman UBE3A Ubiquitin-protein
ligase E3A

Imprinting, mutation 14 1 to 55

Autism spectrum disorder (ASD) – – – 119 1.83 to 35.16

Alpha thalassemia/mental r
etardation X-linked syndrome (ATR-X)

ATRX Chromatin remodeling Mutation 15 0.7 to 27

Claes-Jensen KDM5C H3K4 demethylase Mutation 10 2 to 42

Coffin-Lowry RPS6KA3 Serine/threonine kinase Mutation 10 1.3 to 22.8

Floating-Harbor SRCAP Chromatin remodeling Mutation 17 4 to 42

Fragile X syndrome (FXS) FMR1 Translational control Mutation
(CGG expansion)

32 0.08 to 48

Kabuki KMT2D H3K4 methyltransferase Mutation 46 0 to 24.1

Noonan PTPN11, RAF1, SOS1 RAS/MAPK signaling Mutation 15, 11, 14 0.2 to 49

Rett MECP2 Transcriptional
repression

Mutation 15 1 to 34

Saethre-Chotzen TWIST1 Transcription factor Mutation 22 0 to 38

Sotos NSD1 H3K36 methyltransferase Mutation 20 1.6 to 41

Weaver EZH2 H3K27 methyltransferase Mutation 7 2.58 to 43

Martin-Herranz et al. Genome Biology          (2019) 20:146 Page 3 of 19



a

b c

d

Fig. 1 Screening for epigenetic age acceleration (EAA) is improved when correcting for batch effects. a Flow diagram that portrays an overview of the
different analyses that are carried out in the raw DNA methylation data (IDAT files) from human blood for cases (developmental disorders samples)
and controls (healthy samples). The control samples are filtered to match the age range of the cases (0–55 years). The cases are filtered based on the
number of “adult” samples available (for each disorder, at least 5 samples, with 2 of them with an age ≥ 20 years). More details can be found in the
“Methods” section. QC, quality control; DMPs, differentially methylated positions. b Scatterplot showing the values of the first two principal components
(PCs) for the control samples after performing PCA on the control probes of the 450K arrays. Each point corresponds to a different control sample, and
the colors represent the different batches. The different batches cluster together in the PCA space, showing that the control probes indeed capture
technical variation. Please note that all the PCA calculations were done with more samples from cases and controls than those that were included in
the final screening since it was performed before the filtering step (see the “Methods” section and Fig. 1a). c Plot showing how the median absolute
error (MAE) of the prediction in the control samples, that should tend to zero, is reduced when the PCs capturing the technical variation are included
as part of the modeling strategy (see the “Methods” section). The dashed line represents the optimal number of PCs (17) that was finally used. The
optimal mean MAE is calculated as the average MAE between the green and purple lines. CCC, cell composition correction. d Distribution of the EAA
with cell composition correction (CCC) for the different control batches, after applying batch effect correction
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respectively. Finally, fragile X syndrome (FXS) shows a
positive EAA trend (median EAAwith CCC = + 2.44 years,
median EAAwithout CCC = + 2.88 years) that does not
reach significance in our screen (p valuecorrected, with

CCC = 0.0680, p valuecorrected, without CCC = 0.0693).
Next, we tested the effect of changing the median age

used to build the healthy control model (i.e., the median
age of the controls) on the screening results
(Additional file 1: Figure S2A). Sotos syndrome is robust
to these changes, whilst Rett, Kabuki, and FXS are much
more sensitive to the control model used. This again
highlights the importance of choosing an appropriate
age-matched control when testing for epigenetic age
acceleration, given that Horvath’s epigenetic clock
underestimates epigenetic age for advanced chrono-
logical ages [36, 37].

Moreover, all but one of the Sotos syndrome patients
(19/20 = 95%) show a consistent deviation in EAA (with
CCC) in the same direction (Fig. 2b, c), which is not the
case for the rest of the disorders, with the exception of
Rett syndrome (Additional file 1: Figure S2B). Even
though the data suggest that there are already some
methylomic changes at birth, the EAA seems to increase
with age in the case of Sotos patients (Fig. 2c; p values
for the slope coefficient of the EAA ~Age linear regres-
sion: p valuewith CCC = 0.00569, p valuewithout CCC =
0.00514). This could imply that at least some of the
changes that normally affect the epigenome with age are
happening at a faster rate in Sotos syndrome patients
during their lifespan (as opposed to the idea that the
Sotos epigenetic changes are only acquired during pre-
natal development and remain constant afterwards).

a b c

d e

Fig. 2 Sotos syndrome accelerates epigenetic aging. a Screening for epigenetic age acceleration (EAA) in developmental disorders. The upper panel
shows the p values derived from comparing the EAA distributions for the samples in a given developmental disorder and the control (two-sided
Wilcoxon’s test). The dashed green line displays the significance level of α = 0.01 after Bonferroni correction. The bars above the green line reach
statistical significance. The lower panel displays the actual EAA distributions, which allows assessing the direction of the EAA (positive or negative). In
red: EAA model with cell composition correction (CCC). In blue: EAA model without CCC. ASD, autism spectrum disorder; ATR-X, alpha thalassemia/
mental retardation X-linked syndrome; FXS, fragile X syndrome. b Scatterplot showing the relation between epigenetic age (DNAmAge) according to
Horvath’s model [8] and chronological age of the samples for Sotos (orange) and control (gray). Each sample is represented by one point. The black
dashed line represents the diagonal to aid visualization. c Scatterplot showing the relation between the epigenetic age acceleration (EAA) and
chronological age of the samples for Sotos (orange) and control (gray). Each sample is represented by one point. The yellow line represents the linear
model EAA ~ Age, with the standard error shown in the light yellow shade. d Scatterplot showing the relation between the score for the epigenetic
mitotic clock (pcgtAge) [39] and chronological age of the samples for Sotos (orange) and control (gray). Each sample is represented by one point. A
higher value of pcgtAge is associated with a higher number of cell divisions in the tissue. e Scatterplot showing the relation between the epigenetic
mitotic clock (pcgtAge) acceleration and chronological age of the samples for Sotos (orange) and control (gray). Each sample is represented by one
point. The yellow line represents the linear model pcgtAgeacceleration ~ Age, with the standard error shown in the light yellow shade
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Nevertheless, this increase in EAA with chronological
age is highly influenced by a single patient with a
chronological age of 41 years (i.e., if this patient is re-
moved, the p values for the slope coefficient are p value-
with CCC = 0.1785 and p valuewithout CCC = 0.1087
respectively). Therefore, more data of older Sotos
patients are required to be certain about the dynamics of
these methylomic changes.
In order to further validate the epigenetic age acceler-

ation observed in Sotos patients, we calculated their
epigenetic age according to other widely used epigenetic
clocks: Hannum’s clock [9], Lin’s clock [40], and the
skin-blood clock [41]. These analyses confirmed that
Sotos patients clearly present accelerated epigenetic
aging when compared with healthy individuals (with the
exception of the EAAwithout CCC in the skin-blood clock,
which showed the same trend but did not reach signifi-
cance; Additional file 1: Figure S2C-E).
Finally, we investigated whether Sotos syndrome leads

to a higher rate of (stem) cell division in the blood when
compared with our healthy population. We used a re-
ported epigenetic mitotic clock (pcgtAge) that makes use
of the fact that some CpGs in promoters that are bound
by Polycomb group proteins become hypermethylated
with age. This hypermethylation correlates with the
number of cell divisions in the tissue and is also associ-
ated with an increase in cancer risk [39]. We found a
trend suggesting that the epigenetic mitotic clock might
be accelerated in Sotos patients (p value = 0.0112, Fig. 2d,
e), which could explain the higher cancer predisposition
reported in these patients and might relate to their over-
growth [42]. Again, this trend could be influenced by the
41-year-old Sotos patient (after removing this patient: p
value = 0.0245), and more data of older Sotos patients is
required to confirm this observation.
Consequently, we report that individuals with Sotos

syndrome present an accelerated epigenetic age, which
makes their epigenome look, on average, more than 7
years older than expected. These changes could be the
consequence of a higher ticking rate of the epigenetic
clock (or at least part of its machinery), with epigenetic
age acceleration potentially increasing during lifespan:
the youngest Sotos patient (1.6 years) has an EAAwith

CCC = 5.43 years and the oldest (41 years) has an EAAwith

CCC = 24.53 years. Additionally, Rett syndrome, Kabuki
syndrome, and fragile X syndrome could also have their
epigenetic ages affected, but more evidence is required
to be certain about this conclusion.

Physiological aging and Sotos syndrome share
methylation changes and the genomic context in which
they occur
Sotos syndrome is caused by loss-of-function heterozy-
gous mutations in the NSD1 gene, a histone H3K36

methyltransferase [43, 44]. These mutations lead to a
specific DNA methylation signature in Sotos patients,
potentially due to the crosstalk between the histone and
DNA methylation machinery [44]. In order to gain a
more detailed picture of the reported epigenetic age ac-
celeration, we decided to compare the genome-wide (or
at least array-wide) changes observed in the methylome
during aging with those observed in Sotos syndrome.
For this purpose, we identified differentially methylated
positions (DMPs) for both conditions (see the “Methods”
section). Aging DMPs (aDMPs), were composed almost
equally of CpG sites that gain methylation with age (i.e.,
become hypermethylated, 51.69%) and CpG sites that
lose methylation with age (i.e., become hypomethylated,
48.31%, barplot in Fig. 3a), a picture that resembles pre-
vious studies [45]. On the contrary, DMPs in Sotos were
dominated by CpGs that decrease their methylation level
in individuals with the syndrome (i.e., hypomethylated,
99.27%, barplot in Fig. 3a), consistent with previous
reports [44].
Then, we compared the intersections between the

hypermethylated and hypomethylated DMPs in aging
and Sotos. Most of the DMPs were specific for aging or
Sotos (i.e., they did not overlap), but a subset of them
was shared (table in Fig. 3a). Interestingly, there were
1728 DMPs that became hypomethylated both during
aging and in Sotos (Hypo-Hypo DMPs). This subset of
DMPs is of special interest because it could be used to
understand in more depth some of the mechanisms that
drive hypomethylation during physiological aging. Thus,
we tested whether the different subsets of DMPs are
found in specific genomic contexts (Additional file 1:
Figure S3A,B). DMPs that are hypomethylated during
aging and in Sotos were both enriched (odds ratio > 1)
in enhancer categories (such as “active enhancer 1” or
“weak enhancer 1”, see the chromatin state model used,
from the K562 cell line, in the “Methods” section) and
depleted (odds ratio < 1) for active transcription categor-
ies (such as “active TSS” or “strong transcription”), which
was also observed in the “Hypo-Hypo DMPs” subset
(Fig. 3b). Interestingly, age-related hypomethylation in
enhancers seems to be a characteristic of both humans
[46, 47] and mice [25]. Furthermore, both de novo DNA
methyltransferases (DNMT3A and DNMT3B) have been
shown to bind in an H3K36me3-dependent manner to
active enhancers [48], consistent with our results.
When looking at the levels of total RNA expression

(depleted for rRNA) in the blood, we confirmed a
significant reduction in the RNA levels around these
hypomethylated DMPs when compared with the control
sets (Fig. 3c, see the “Methods” section for more details
on how the control sets were defined). Interestingly,
hypomethylated DMPs in both aging and Sotos were de-
pleted from the gene bodies (Fig. 3b) and were located
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Fig. 3 (See legend on next page.)
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in areas with lower levels of H3K36me3 when compared
with the control sets (Fig. 3d, see Additional file 1:
Figure S3B for a comprehensive comparison of all the
DMPs subsets). Moreover, hypomethylated aDMPs and
hypomethylated Sotos DMPs were both generally
enriched or depleted for the same histone marks in the
blood (Additional file 1: Figure S3B), which adds weight
to the hypothesis that they share the same genomic
context and could become hypomethylated through
similar molecular mechanisms.
Intriguingly, we also identified a subset of DMPs (2550)

that were hypermethylated during aging and hypomethy-
lated in Sotos (Fig. 3a). These “Hyper-Hypo DMPs” seem
to be enriched for categories such as “bivalent promoter”
and ‘repressed polycomb’ (Additional file 1: Figure S3A),
which are normally associated with developmental genes
[49, 50]. These categories are also a defining characteristic
of the hypermethylated aDMPs, highlighting that even
though the direction of the DNA methylation changes is
different in some aging and Sotos DMPs, the genomic
context in which they happen is shared.
Finally, we looked at the DNA methylation patterns in

the 353 Horvath’s epigenetic clock CpG sites for the
Sotos samples. For each clock CpG site, we modeled the
changes of DNA methylation during the lifespan in the
healthy control individuals and then calculated the
deviations from these patterns for the Sotos samples
(Additional file 1: Figure S3C, see the “Methods” sec-
tion). As expected, the landscape of clock CpG sites is
dominated by hypomethylation in the Sotos samples,
although only a small fraction of the clock CpG sites
seem to be significantly affected (Additional file 1: Figure
S3D, Additional file 6). Overall, we confirmed the trends
reported for the genome-wide analysis (Additional file 1:
Figure S3E-G). However, given the much smaller num-
ber of CpG sites to consider in this analysis, very few
comparisons reached significance.

We have demonstrated that the aging process and
Sotos syndrome share a subset of hypomethylated CpG
sites that are characterized by an enrichment in enhan-
cer features and a depletion of active transcription activ-
ity. This highlights the usefulness of developmental
disorders as a model to study the mechanisms that may
drive the changes in the methylome with age, since they
permit stratification of the aging DMPs into different
functional categories that are associated with alterations
in the function of specific genes and hence specific
molecular components of the epigenetic aging clock.

Sotos syndrome is associated with a decrease of methylation
Shannon entropy in the epigenetic clock CpG sites
Shannon entropy can be used in the context of DNA
methylation analysis to estimate the information content
stored in a given set of CpG sites. Shannon entropy is
minimized when the methylation levels of all the CpG
sites are either 0% or 100% and maximized when all of
them are 50% (see the “Methods” section). Previous re-
ports have shown that the Shannon entropy associated
with the methylome increases with age, which implies
that the epigenome loses information content [9, 12, 46].
We confirmed this genome-wide effect (i.e., considering
all the CpG sites that passed our pre-processing
pipeline) in our healthy samples, where we observed a
positive Spearman correlation coefficient between
chronological age and genome-wide Shannon entropy of
0.3984 (p value = 3.21 × 10−44). This result was robust
when removing outlier batches (Additional file 1: Figure
S4C). Next, we tested whether Sotos patients present
genome-wide Shannon entropy acceleration, i.e., devia-
tions from the expected genome-wide Shannon entropy
for their age (see the “Methods” section). Despite de-
tailed analysis, we did not find evidence that this was the
case when looking genome-wide (p value = 0.71, Fig. 4a,
b; Additional file 1: Figure S4A). This conclusion held

(See figure on previous page.)
Fig. 3 Comparison between the DNA methylation changes during physiological aging and in Sotos. a Left: barplot showing the total number of
differentially methylated positions (DMPs) found during physiological aging and in Sotos syndrome. CpG sites that increase their methylation
levels with age in our healthy population or those that are elevated in Sotos patients (when compared with a control) are displayed in red.
Conversely, those CpG sites that decrease their methylation levels are displayed in blue. Right: a table that represents the intersection between
the aging (aDMPs) and the Sotos DMPs. The subset resulting from the intersection between the hypomethylated DMPs in aging and Sotos is
called the “Hypo-Hypo DMPs” subset (N = 1728). b Enrichment for the categorical (epi) genomic features considered when comparing the
different genome-wide subsets of differentially methylated positions (DMPs) in aging and Sotos against a control (see the “Methods” section).
The y-axis represents the odds ratio (OR), the error bars show the 95% confidence interval for the OR estimate and the color of the points codes
for -log10(p value) obtained after testing for enrichment using Fisher’s exact test. An OR > 1 shows that the given feature is enriched in the subset
of DMPs considered, whilst an OR < 1 shows that it is found less than expected. In gray: features that did not reach significance using a
significance level of α = 0.01 after Bonferroni correction. c Boxplots showing the distributions of the “normalised RNA expression” (NRE) when
comparing the different genome-wide subsets of differentially methylated positions (DMPs) in aging and Sotos against a control (see the
“Methods” section). NRE represents normalized mean transcript abundance in a window of ± 200 bp from the CpG site coordinate (DMP) being
considered (see the “Methods” section). The p values (two-sided Wilcoxon’s test, before multiple testing correction) are shown above the boxplots.
The number of DMPs belonging to each subset (in green) and the median value of the feature score (in dark red) are shown below the boxplots.
d Same as c, but showing the “normalised fold change” (NFC) for the H3K36me3 histone modification (representing normalized mean ChIP-seq
fold change for H3K36me3 in a window of ± 200 bp from the DMP being considered, see the “Methods” section)
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when the comparison was performed inside the batch
that contained the Sotos samples (GSE74432), therefore
providing evidence that it is not confounded by batch
effect (p value = 0.73, Additional file 1: Figure S4E).
When we considered only the 353 clock CpG sites for

the entropy calculations, the picture was different. Shan-
non entropy for the 353 clock sites slightly decreased
with age in the controls when we included all the
batches, showing the opposite direction when compared
with the genome-wide entropy (Spearman correlation
coefficient = − 0.1223, p value = 3.8166 × 10−5, Fig. 4c).
However, when we removed the “Europe” batch (which
was an outlier even after pre-processing, Additional file 1:
Figure S4D), this trend was reversed and we observed a
weak increase of clock Shannon entropy with age
(Spearman correlation coefficient = 0.1048, p value =
8.6245 × 10−5). This shows that Shannon entropy calcu-
lations are very sensitive to batch effects, especially when

considering a small number of CpG sites, and the results
must be interpreted carefully.
Interestingly, the mean Shannon entropy across all the

control samples was higher in the epigenetic clock sites
(mean = 0.4726, Fig. 4c) with respect to the genome-
wide entropy (mean = 0.3913, Fig. 4a). Sotos syndrome
patients displayed a lower clock Shannon entropy when
compared with the control (p value = 5.0449 × 10−12,
Fig. 4d, Additional file 1: Figure S4B), which is probably
driven by the hypomethylation of the clock CpG sites.
Importantly, this conclusion held when the comparison
was performed inside the batch that contained the Sotos
samples (GSE74432), again providing evidence that it is
not confounded by batch effect (p value = 7.3757 × 10−11,
Additional file 1: Figure S4F). Furthermore, this high-
lights that the Horvath clock sites could have slightly
different characteristics in terms of the methylation
entropy associated with them when compared with the

a c

b d

Fig. 4 Analysis of methylation Shannon entropy during physiological aging and in Sotos syndrome. a Scatterplot showing the relation between
genome-wide Shannon entropy (i.e., calculated using the methylation levels of all the CpG sites in the array) and chronological age of the
samples for Sotos (orange) and healthy controls (gray). Each sample is represented by one point. b Boxplots showing the distributions of
genome-wide Shannon entropy acceleration (i.e., deviations from the expected genome-wide Shannon entropy for their age) for the control and
Sotos samples. The p value displayed on top of the boxplots was derived from a two-sided Wilcoxon’s test. c Same as a., but using the Shannon
entropy calculated only for the 353 CpG sites in the Horvath epigenetic clock. d Same as b, but using the Shannon entropy calculated only for
the 353 CpG sites in the Horvath epigenetic clock
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genome as a whole, something that to our knowledge
has not been reported before.

Discussion
The epigenetic aging clock has emerged as the most ac-
curate biomarker of the aging process, and it seems to
be a conserved property in mammalian genomes [5, 6].
However, we do not know yet whether the age-related
DNA methylation changes measured are functional at all
or whether they are related to some fundamental process
of the biology of aging. Developmental disorders in
humans represent an interesting framework to look at
the biological effects of mutations in genes that are fun-
damental for the integrity of the epigenetic landscape
and other core processes, such as growth or neurodeve-
lopment [30, 31]. Furthermore, according to the epigen-
etic clock theory of aging, epigenetic clocks provide a
continuous readout that connects purposeful processes
in development with adverse effects in later life [5].
Therefore, using a reverse genetics approach, we aimed
to identify the genes that disrupt the aspects of the
behavior of the epigenetic aging clock in humans.
Most of the studies have looked at the epigenetic aging

clock using Horvath’s model [8], which has a ready-to-
use online calculator for epigenetic age [51]. This has
clearly simplified the computational process and helped
a lot of research groups to test the behavior of the epi-
genetic clock in their system of interest. However, this
has also led to the treatment of the epigenetic clock as a
“black-box”, without a critical assessment of the statis-
tical methodology behind it. Therefore, we decided to
benchmark the main steps involved when estimating epi-
genetic age acceleration (pre-processing of the raw data
from methylation arrays and cell composition deconvo-
lution algorithms), to quantify the effects of technical
variation on the epigenetic clock predictions and to
assess the impact of the control age distribution on the
epigenetic age acceleration calculations. Previous at-
tempts to account for technical variation have used the
first 5 principal components (PCs) estimated directly
from the DNA methylation data [23]. However, this
approach potentially removes meaningful biological vari-
ation. For the first time, we have shown that it is pos-
sible to use the control probes from the 450K array to
readily correct for batch effects in the context of the
epigenetic clock, which reduces the error associated with
the predictions and decreases the likelihood of reporting
a false positive. Furthermore, we have confirmed the
suspicion that Horvath’s model underestimates epigen-
etic age for older ages [36, 37] and assessed the impact
of this bias in the screen for epigenetic age acceleration.
The results from our screen strongly suggest that

Sotos syndrome accelerates epigenetic aging, and this ef-
fect was confirmed using other epigenetic clocks. Sotos

syndrome is caused by loss-of-function mutations in the
NSD1 gene [43, 44], which encodes a histone H3 lysine
36 (H3K36) methyltransferase. This leads to a phenotype
which can include prenatal and postnatal overgrowth,
facial gestalt, advanced bone age, developmental delay,
higher cancer predisposition, and, in some cases, heart
defects [42]. Remarkably, many of these characteristics
could be interpreted as aging-like, identifying Sotos
syndrome as a potential human model of accelerated
physiological aging.
NSD1 catalyzes the addition of either monomethyl

(H3K36me) or dimethyl groups (H3K36me2) and indir-
ectly regulates the levels of trimethylation (H3K36me3) by
altering the availability of the monomethyl and dimethyl
substrates for the trimethylation enzymes (SETD2 in
humans, whose mutations cause a “Sotos-like” overgrowth
syndrome) [52, 53]. H3K36 methylation has a complex
role in the regulation of transcription [52] and has been
shown to regulate nutrient stress response in yeast [54].
Moreover, experiments in model organisms (yeast and
worm) have demonstrated that mutations in H3K36
methyltranferases decrease lifespan, and remarkably,
mutations in H3K36 demethylases increase it [55–57].
In humans, DNA methylation patterns are established

and maintained by three conserved enzymes: the
maintenance DNA methyltransferase DNMT1 and the
de novo DNA methyltransferases DNMT3A and
DNMT3B [58]. Both DNMT3A and DNMT3B contain
PWWP domains that can read the H3K36me3 histone
mark [59, 60]. Therefore, the H3K36 methylation land-
scape can influence DNA methylation levels in specific
genomic regions through the recruitment of the de novo
DNA methyltransferases. Mutations in the PWWP
domain of DNMT3A impair its binding to H3K36me2
and H3K36me3 and cause an undergrowth disorder in
humans (microcephalic dwarfism) [61]. This redirects
DNMT3A, which is normally targeted to H3K36me2
and H3K36me3 throughout the genome, to DNA methy-
lation valleys (DMVs, aka DNA methylation canyons),
which become hypermethylated [61], a phenomenon
that also seems to happen during physiological aging in
humans [46, 62, 63] and mice [25]. DMVs are hypo-
methylated domains conserved across cell types and
species, often associated with Polycomb-regulated devel-
opmental genes and marked by bivalent chromatin (with
H3K27me3 and H3K4me3) [64–67]. Therefore, we sug-
gest a model (Fig. 5) where the reduction in the levels of
H3K36me2 and/or H3K36me3, caused by a proposed
decrease in H3K36 methylation maintenance during
aging or NSD1 function in Sotos syndrome, could lead
to hypomethylation in many genomic regions (because
DNMT3A is recruited less efficiently) and hypermethyla-
tion in DMVs (because of the higher availability of
DNMT3A). Indeed, we observe enrichment for
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categories such as “bivalent promoter” or “repressed
polycomb” in the hypermethylated DMPs in Sotos and
aging (Additional file 1: Figure S3A), which is also sup-
ported by higher levels of polycomb repressing complex
2 (PRC2, represented by EZH2) and H3K27me3, the
mark deposited by PRC2 (Additional file 1: Figure S3B).
This is also consistent with the results obtained for the
epigenetic mitotic clock [39], where we observe a trend to-
wards increased hypermethylation of Polycomb-bound re-
gions in Sotos patients. Furthermore, it is worth
mentioning that a mechanistic link between PRC2 recruit-
ment and H3K36me3 has also been unravelled to occur
via the Tudor domains of some polycomb-like proteins
[70, 71].
A recent preprint has shown that loss-of-function

mutations in DNMT3A, which cause Tatton-Brown-
Rahman overgrowth syndrome, also lead to a higher
ticking rate of the epigenetic aging clock [72]. They also
report positive epigenetic age acceleration in Sotos
syndrome and negative acceleration in Kabuki syndrome,
consistent with our results. Furthermore, they observe a
DNA methylation signature in the DNMT3A mutants

characterized by widespread hypomethylation, with a
modest enrichment of DMPs in the regions upstream of
the transcription start site, shores, and enhancers [72],
which we also detect in our “Hypo-Hypo DMPs” (those
that become hypomethylated both during physiological
aging and in Sotos). Therefore, the hypomethylation ob-
served in our “Hypo-Hypo DMPs” is consistent with a
reduced methylation activity of DNMT3A, which in our
system could be a consequence of the decreased recruit-
ment of DNMT3A to genomic regions that have lost
H3K36 methylation (Fig. 5).
Interestingly, H3K36me3 is required for the selective

binding of the de novo DNA methyltransferase
DNMT3B to the bodies of highly transcribed genes [60].
Furthermore, DNMT3B loss reduces gene body methyla-
tion, which leads to intragenic spurious transcription
(aka cryptic transcription) [73]. An increase in this so-
called cryptic transcription seems to be a conserved fea-
ture of the aging process [56]. Therefore, the changes
observed in the “Hypo-Hypo DMPs” could theoretically
be a consequence of the loss of H3K36me3 and the
concomitant inability of DNMT3B to be recruited to

Fig. 5 Proposed model that highlights the role of H3K36 methylation maintenance on epigenetic aging. The H3K36me2/3 mark allows recruiting
de novo DNA methyltransferases DNMT3A (in green) and DNMT3B (not shown) through their PWWP domain (in blue) to different genomic
regions (such as gene bodies or pericentric heterochromatin) [60, 68, 69], which leads to the methylation of the cytosines in the DNA of these
regions (5-mC, black lollipops). On the contrary, DNA methylation valleys (DMVs) are conserved genomic regions that are normally found
hypomethylated and associated with Polycomb-regulated developmental genes [64–67]. During aging, the H3K36 methylation machinery could
become less efficient at maintaining the H3K36me2/3 landscape. This would lead to a relocation of de novo DNA methyltransferases from their
original genomic reservoirs (which would become hypomethylated) to other non-specific regions such as DMVs (which would become
hypermethylated and potentially lose their normal boundaries), with functional consequences for the tissues. This is also partially observed in
patients with Sotos syndrome, where mutations in NSD1 potentially affect H3K36me2/3 patterns and accelerate the epigenetic aging clock as
measured with the Horvath model [8]. Given that DNMT3B is enriched in the gene bodies of highly transcribed genes [60] and that we found
these regions depleted in our differential methylation analysis, we hypothesize that the hypermethylation of DMVs could be mainly driven by
DNMT3A instead. However, it is important to mention that our analysis does not discard a role of DNMT3B during epigenetic aging
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gene bodies. However, the “Hypo-Hypo DMPs” were de-
pleted for H3K36me3, active transcription, and gene
bodies when compared with the rest of the probes in the
array (Fig. 3b–d), prompting us to suggest that the DNA
methylation changes observed are likely mediated by
DNMT3A instead (Fig. 5). Nevertheless, it is worth
mentioning that the different biological replicates for the
blood H3K36me3 ChIP-seq datasets were quite hetero-
geneous and that the absolute difference in the case of
the hypomethylated Sotos DMPs, although significant
due to the big sample sizes, is quite small. Thus, we
cannot exclude the existence of this mechanism during
human aging, and an exhaustive study on the prevalence
of cryptic transcription in humans and its relation to the
aging methylome should be carried out.
H3K36me3 has also been shown to guide deposition

of the N6-methyladenosine mRNA modification (m6A),
an important post-transcriptional mechanism of gene
regulation [74]. Interestingly, a decrease in overall m6A
during human aging has been previously reported in
PBMC [75], suggesting another biological route through
which an alteration of the H3K36 methylation landscape
could have functional consequences for the organism.
Because of the way that the Horvath epigenetic clock

was trained [8], it is likely that its constituent 353 CpG
sites are a low-dimensional representation of the differ-
ent genome-wide processes that are eroding the epige-
nome with age. Our analysis has shown that these 353
CpG sites are characterized by a higher Shannon entropy
when compared with the rest of the genome, which is
dramatically decreased in the case of Sotos patients. This
could be related to the fact that the clock CpGs are
enriched in the regions of bivalent chromatin (marked
by H3K27me3 and H3K4me3), conferring a more dy-
namic or plastic regulatory state with levels of DNA
methylation deviated from the collapsed states of 0 or 1.
Interestingly, EZH2 (part of polycomb repressing
complex 2, responsible for H3K27 methylation) is an
interacting partner of DNMT3A and NSD1, with muta-
tions in NSD1 affecting the genome-wide levels of
H3K27me3 [76]. Furthermore, Kabuki syndrome was
weakly identified in our screen as having an epigenome
younger than expected, which could be related to the
fact that they show postnatal dwarfism [77, 78]. Kabuki
syndrome is caused by loss-of-function mutations in
KMT2D [77, 78], a major mammalian H3K4 mono-
methyltransferase [79]. Additionally, H3K27me3 and
H3K4me3 levels can affect lifespan in model organisms [3].
It will be interesting to test whether bivalent chromatin is a
general feature of multi-tissue epigenetic aging clocks.
Thus, DNMT3A, NSD1, and the machinery in control

of bivalent chromatin (such as EZH2 and KMT2D) con-
tribute to an emerging picture on how the mammalian
epigenome is regulated during aging, which could open

new avenues for anti-aging drug development. Muta-
tions in these proteins lead to different developmental
disorders with impaired growth defects [30], with
DNMT3A, NSD1, and potentially KMT2D also affecting
epigenetic aging. Interestingly, EZH2 mutations (which
cause Weaver syndrome, Table 1) do not seem to affect
the epigenetic clock in our screen. However, this
syndrome has the smallest number of samples (7), and
this could limit the power to detect any changes.
Our screen has also revealed that Rett syndrome and

fragile X syndrome (FXS) could potentially have an ac-
celerated epigenetic age. It is worth noting that FXS is
caused by an expansion of the CGG trinucleotide repeat
located in the 5′ UTR of the FMR1 gene [80]. Interest-
ingly, Huntington’s disease, caused by a trinucleotide
repeat expansion of CAG, has also been shown to accel-
erate epigenetic aging of the human brain [23], pointing
towards trinucleotide repeat instability as an interesting
molecular mechanism to look at from an aging perspec-
tive. It is important to notice that the conclusions for
Rett syndrome, FXS, and Kabuki syndrome were very
dependent on the age range used in the healthy control
(Additional file 1: Figure S2A), and these results must
therefore be treated with caution.
Our study has several limitations that we tried to

address in the best possible way. First of all, given that
DNA methylation data for patients with developmental
disorders is relatively rare, some of the sample sizes were
quite small. It is thus possible that some of the other
developmental disorders assessed are epigenetically
accelerated but we lack the power to detect this.
Furthermore, individuals with the disorders tend to get
sampled when they are young, i.e., before reproductive
age. Horvath’s clock adjusts for the different rates of
change in the DNA methylation levels of the clock CpGs
before and after reproductive age (20 years in humans)
[8], but this could still have an effect on the predictions,
especially if the control is not properly age-matched.
Our solution was to discard those developmental disor-
ders with less than 5 samples, and we required them to
have at least 2 samples with an age ≥ 20 years, which
reduced the list of final disorders included to the ones
listed in Table 1.
Future studies should increase the sample size and fol-

low the patients during their entire lifespan in order to
confirm our findings. Directly measuring the functional
changes in the H3K36 methylation landscape (or its
machinery) during human aging will further validate this
work. Moreover, it would be interesting to identify mu-
tations that affect, besides the mean, the variance of epi-
genetic age acceleration, since changes in methylation
variability at single CpG sites with age have been associ-
ated with fundamental aging mechanisms [46]. Finally,
testing the influence of H3K36 methylation on the
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epigenetic clock and lifespan in mice will provide deeper
mechanistic insights.

Conclusions
The epigenetic aging clock has created a new methodo-
logical paradigm to study the aging process in humans.
However, the molecular mechanisms that control its
ticking rate are still mysterious. In this study, by looking
at patients with developmental disorders, we have dem-
onstrated that Sotos syndrome accelerates epigenetic
aging and uncovered a potential role of the H3K36
methylation machinery as a key component of the
epigenetic maintenance system in humans. We hope that
this research will shed some light on the different pro-
cesses that erode the human epigenetic landscape during
aging and provide a new hypothesis about the mecha-
nisms behind the epigenetic aging clock.

Methods
Sample collection and annotation
We collected DNA methylation data generated with the
Illumina Infinium HumanMethylation450 BeadChip
(450K array) from human blood. In the case of the de-
velopmental disorder samples, we combined public data
with the data generated in-house for other clinical
studies (Table 1, Additional file 2) [31]. We took all the
data for developmental disorders that we could find in
order to perform unbiased screening. The healthy
samples used to build the control were mainly obtained
from public sources (Additional file 3). Basic metadata
(including the chronological age) was also stored. All the
mutations in the developmental disorder samples were
manually curated using Variant Effect Predictor [81] in
the GRCh37 (hg19) human genome assembly. Those
samples with a variant of unknown significance that had
the characteristic DNA methylation signature of the dis-
ease were also included (they are labelled as “YES_pre-
dicted” in Additional file 2). In the case of fragile X
syndrome (FXS), only male samples with full mutation
(> 200 repeats) [80] were included in the final screen. As
a consequence, only the samples with a clear molecular
and clinical diagnosis were kept for the final screen.

Pre-processing, QC, and filtering the data for the
epigenetic clock calculations
Raw DNA methylation array data (IDAT files) were
processed using the minfi R package [82]. Raw data were
background-corrected using noob [83] before calculating
the beta values. In the case of the beta values which are
input to Horvath’s model, we observed that background
correction did not have a major impact in the final
predictions of epigenetic age acceleration in the control
as long as we corrected for batch effects (Fig. 1c,
Additional file 1: Figure S5A). We decided to keep the

noob background correction step for consistency with
the rest of the pipelines. Epigenetic age (DNAmAge) was
calculated using the code from Horvath, which includes
an internal normalization step against a blood gold
standard [8]. The scripts are available in our GitHub
repository (https://github.com/demh/epigenetic_ageing_
clock) for the use of the community [84].
Quality control (QC) was performed in all samples.

Following the guidelines from the minfi package [82],
only those samples that satisfied the following criteria
were kept for the analysis: the sex predicted from the
DNA methylation data was the same as the reported sex
in the metadata, they passed BMIQ normalization and
medianð log2MÞþmedianð log2UÞ

2 ≥10:5 , where M is the methyl-
ated intensity and U the unmethylated intensity for the
array probes.

Correcting for batch effects
In order to correct for batch effects that could confound
the conclusions from our analysis, we decided to make
use of the control probes available in the 450K array.
These probes capture only the technical variance in nega-
tive controls and different steps of the array protocol, such
as bisulfite conversion, staining or hybridization [34, 85].
We performed PCA (with centering but not scaling using
the prcomp function in R) on the raw intensities of the
control probes (847 probes × 2 channels = 1694 intensity
values) for all our controls (N = 2218) and cases (N = 666)
that passed QC (Fig. 1a). Including the technical PCs as
covariates in the models to calculate epigenetic age accel-
eration (EAA) improved the error from the predictions in
the controls (Fig. 1c, Additional file 1: Figure S5A). The
optimal number of PCs was found by making use of the
findElbow function from [86].

Correcting for cell composition
The proportions of different blood cell types change
with age and this can affect the methylation profiles of
the samples. Therefore, when calculating the epigenetic
age acceleration, it is important to compare the models
with and without cell type proportions included as
covariates [38]. Cell type proportions can be estimated
from DNA methylation data using different deconvolu-
tion algorithms [87]. In the context of the epigenetic
clock, most of the studies have used the Houseman
method [88]. We have benchmarked different reference-
based deconvolution strategies (combining different pre-
processing steps, references, and deconvolution algo-
rithms) against a gold standard dataset (GSE77797) [89].
Our results suggest that using the IDOL strategy [89] to
build the blood reference (from the Reinius et al. dataset,
GSE35069) [90], together with the Houseman algorithm
[88] and some pre-processing steps (noob background

Martin-Herranz et al. Genome Biology          (2019) 20:146 Page 13 of 19

https://github.com/demh/epigenetic_ageing_clock
https://github.com/demh/epigenetic_ageing_clock


correction, probe filtering, BMIQ normalization), leads
to the best cell type proportions estimates, i.e., those that
minimize the deviations between our estimates and the
real cell type composition of the samples in the gold
standard dataset (Additional file 1: Figure S5B,
Additional file 4). We used the epidish function from the
EpiDISH R package [91] for these purposes.

Calculating the epigenetic age acceleration and
performing the main screen
Only those developmental disorders for which we had at
least 5 samples, with 2 of them with an age ≥ 20 years,
were included in the main screen (N = 367). Healthy
samples that matched the age range of those disorders
(0–55 years, N = 1128) were used to train the following
linear models (the control models):

(I) Without cell composition correction (CCC):

DNAmAge � Ageþ Sexþ PC1þ PC2þ…þ PCN

(II) With cell composition correction (CCC):

DNAmAge � Ageþ Sexþ Granþ CD4Tþ CD8T
þ BþMonoþNKþ PC1þ PC2þ…
þ PCN

where DNAmAge is the epigenetic age calculated using
Horvath’s model [8], Age is the chronological age, PCN
is the Nth technical PC obtained from the control
probes (N = 17 was the optimal, Fig. 1c) and Gran,
CD4T, CD8T, B, Mono, and NK are the different propor-
tions of the blood cell types as estimated with our de-
convolution strategy. The linear models were fitted in R
with the lm function, which uses least-squares.
The residuals from a control model represent the epi-

genetic age acceleration (EAA) for the different healthy
samples, which should be centered around zero after
batch effect correction (Additional file 1: Figure S1E,
Fig. 1d). Then, the median absolute error (MAE) can be
calculated as (Fig. 1c, Additional file 1: Figure S5A):

(III)MAE = median(abs(EAAi))

where EAAi is the epigenetic age acceleration for a
healthy sample from the control.
Once the control models are established, we can calcu-

late the EAA for the different samples with a develop-
mental disorder (cases) by taking the difference between
the epigenetic age (DNAmAge) for the case sample and
the predicted value from the corresponding control

model (with or without cell composition correction).
Finally, the distributions of the EAA for the different
developmental disorders were compared against the
EAA distribution for the healthy controls using a two-
sided Wilcoxon’s test. p values were adjusted for
multiple testing using Bonferroni correction and a sig-
nificance level of α = 0.01 was applied.
A similar approach was used in the case of the other

epigenetic clocks assessed. The linear coefficients for the
different probes were obtained from the original publica-
tions [9, 40, 41]. In the case of the skin-blood clock, the
same age transformation employed for the Horvath’s
clock was applied [41]. Due to our filtering criteria, some
array probes were missing, which could slightly affect
the predictions of the different epigenetic clocks: Han-
num’s clock [9] (68/71 probes available), Lin’s clock [40]
(97/99 probes available), and the skin-blood clock [41]
(385/391 probes available). This may be the reason be-
hind the offset observed, particularly prominent in the
predictions of Lin’s clock (Additional file 1: Figure S2C-
E). Nevertheless, this bias is present in both Sotos and
control samples, and therefore, it is unlikely that it af-
fects the main conclusions.

Calculating pcgtAge and Shannon entropy
Raw DNA methylation data (IDAT files) was
background-corrected using noob [83]. Next, we filtered
out the probes associated with SNPs, cross-reactive
probes [92], and probes from the sex chromosomes,
before performing BMIQ intra-array normalization to
correct for the bias in probe design [93]. Then, we calcu-
lated pcgtAge as the average of the beta values for the
probes that constitute the epigenetic mitotic clock [39].
It is worth noting that only 378 out of the 385 probes
were left after our filtering criteria.
Shannon entropy was calculated as previously

described [9]:

(IV)Entropy ¼ 1
N� log2ð12Þ

�PN
i¼1½βi � log2ðβiÞ þ ð1−βiÞ

� log2ð1−βiÞ�

where βi represents the methylation beta value for the ith
probe (CpG site) in the array, N = 428,266 for the genome-
wide entropy, and N = 353 for Horvath clock sites entropy.
In order to calculate the pcgtAge and Shannon entropy

acceleration, we followed a similar strategy to the one
reported for EAA with CCC, fitting the following linear
models:

(V) pcgtAge~Age + Sex + Gran + CD4T + CD8T + B +
Mono +NK + PC1 +… + PC17

(VI) Entropy~Age + Sex + Gran + CD4T + CD8T + B +
Mono +NK + PC1 +… + PC17
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It is worth mentioning that we observed a remarkable
effect of the batch on the Shannon entropy calculations,
which generated high entropy variability for a given age
(Additional file 1: Figure S4C,D). Thus, accounting for
technical variation becomes crucial when assessing this
type of data, even after background correction, probe
filtering, and BMIQ normalization.

Identifying differentially methylated positions
DMPs were identified using a modified version of the
dmpFinder function in the minfi R package [82], where we
accounted for other covariates. The aging DMPs (aDMPs)
were calculated using the control samples that were in-
cluded in the screen (age range 0–55 years, N = 1128) and
the following linear model (p values and regression coeffi-
cients were extracted for the Age covariate):

(VII) βi~Age + Sex + Gran + CD4T + CD8T + B +
Mono +NK + PC1 +… + PC17

where βi represents the methylation beta value for the
ith probe (CpG site) in the array.
The Sotos DMPs were calculated by comparing the Sotos

samples (N = 20) against the control samples (N = 51) from
the same dataset (GSE74432) [44] using the following linear
model (p values and regression coefficients were extracted
for the Disease_status covariate):

(VIII) βi~Disease _ status + Age + Sex + Gran + CD4T +
CD8T + B +Mono +NK + PC1 +… + PC17

We selected as our final DMPs those CpG probes that
survived our analysis after Bonferroni multiple testing
correction with a significance level of α = 0.01.

(Epi) genomic annotation of the CpG sites
Different (epi) genomic features were extracted for the
CpG sites of interest. All the data were mapped to the
hg19 assembly of the human genome.
The continuous features were calculated by extracting

the mean value in a window of ± 200 bp from the CpG
site coordinate using the pyBigWig package [94]. We
chose this window value based on the methylation
correlation observed between neighboring CpG sites in
previous studies [95]. The continuous features included
(Additional file 5) the following:

– ChIP-seq data from ENCODE (histone
modifications from peripheral blood mononuclear
cells or PBMC; EZH2, as a marker of polycomb
repressing complex 2 binding, from B cells; RNF2,
as a marker of polycomb repressing complex 1

binding, from the K562 cell line). We obtained Z-
scores (using the scale function in R) for the values
of “fold change over control” as calculated in
ENCODE [96]. When needed, biological replicates
of the same feature were aggregated by taking the
mean of the Z-scores in order to obtain the
“normalised fold change” (NFC).

– ChIP-seq data for LaminB1 (GSM1289416,
quantified as “normalised read counts” or NRC) and
Repli-seq data for replication timing (GSM923447,
quantified as “wavelet-transformed signals” or WTS).
We used the same data from the IMR90 cell line as
in [97].

– Total RNA-seq data (rRNA depleted, from PBMC)
from ENCODE. We calculated Z-scores after
aggregating the “signal of unique reads” (sur) for
both strands (+ and −) in the following manner:

(IX)RNAi = log2(1 + suri+ + suri−)

where RNAi represents the RNA signal (that then needs
to be scaled to obtain the “normalised RNA expression”
or NRE) for the ith CpG site.
The categorical features were obtained by looking at

the overlap (using the pybedtools package) [98] of the
CpG sites with the following:

– Gene bodies, from protein-coding genes as defined
in the basic gene annotation of GENCODE release
29 [99].

– CpG islands (CGIs) were obtained from the UCSC
Genome Browser [100]. Shores were defined as
regions 0 to 2 kb away from CGIs in both directions
and shelves as regions 2 to 4 kb away from CGIs in
both directions as previously described [95, 101].

– Chromatin states were obtained from the K562 cell
line in the Roadmap Epigenomics Project (based on
imputed data, 25 states, 12 marks) [102]. A
visualization for the association between chromatin
marks and chromatin states can be found in [103].
When needed for visualization purposes, the 25 states
were manually collapsed to a lower number of them.

We compared the different genomic features for each
one of our subsets of CpG sites (hypomethylated
aDMPs, hypomethylated Sotos DMPs) against a control
set. This control set was composed of all the probes
from the background set from which we removed the
subset that we were testing. In the case of the compari-
sons against the 353 Horvath clock CpG sites, a back-
ground set of the 21,368 (21K) CpG probes used to train
the original Horvath model [8] was used. In the case of
the genome-wide comparisons for aging and Sotos
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syndrome, a background set containing all 428,266 probes
that passed our pre-processing pipeline (450K) was used.
The distributions of the scores from the continuous

features were compared using a two-sided Wilcoxon’s
test. In the case of the categorical features, we tested for
enrichment using Fisher’s exact test.

Differences in the clock CpGs beta values for Sotos
syndrome
To compare the beta values of the Horvath clock CpG
sites between our healthy samples and Sotos samples,
we fitted the following linear models in the healthy sam-
ples (control CpG models, Additional file 1: Figure S3C,
Additional file 6):

(X) βi~Age + Age2 + Sex + Gran + CD4T + CD8T + B +
Mono +NK + PC1 +… + PC17

where βi represents the methylation beta values for the
ith probe (CpG site) in the 353 CpG clock sites. The
Age2 term allows accounting for non-linear relationships
between chronological age and the beta values.
Finally, we calculated the difference between the beta

values in Sotos samples and the predictions from the
control CpG models and displayed these differences in
an annotated heatmap (Additional file 1: Figure S3D).

Code availability
All the code used to perform the analyses here presented
can be found in our GitHub repository (https://github.
com/demh/epigenetic_ageing_clock) under GNU Gen-
eral Public License v3.0 [84].
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